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1 Einführung



2 Modeling Network Design Problems

2.1 Modeling Design Problems in Link-Path Formulation
Preliminary notation for undirected demands:

• x − y …Link between node x and y

• ĥxy = b …Demand d between nodes x and y (i. e. Demand b bandwidth between
nodes x and y)

• x̂v1v2 = f …Flow on the path between v1 and v2

• x̂v1v2v3 = f …Flow on the path v1, v2, v3

• ĉv1v2 …Capacity of the link between v1 and v2
This generally yields equations for satisfying the demands and inequalities for limiting

the bandwidth to the link capacities, e. g.

x̂12 + x̂132 = 5 (2.1)
x̂13 + x̂123 = 7 (2.2)

... (2.3)
x̂132 + x̂13 + x̂213 ≤ 10 (2.4)
x̂132 + x̂123 + x̂23 ≤ 15 (2.5)

As such a system usually has multiple solutions, an objective function is defined,
which can then be optimized, e. g.:

F = x̂12 + 2x̂132 + x̂13 + 2x̂123 + x̂23 + 2x̂213 (2.6)

In this example, flow routed over two links are weighted with factor two, so direct links
are preferred.

Such an optimization is called a multi-commodity flow problem. The optimal
solution to this problem is marked with an asterisk, e. g.:

x̂∗12 = 5 x̂∗13 = 7 x̂∗23 = 8 (2.7)

Important observations:
• Changing the objective function usually affects the optimal solution to a problem.

• Formulation a good objective function for the particular network is important for
obtaining meaningful solutions.



2 Modeling Network Design Problems 5

2.2 Modeling Design Problems in Node-Link Formulation
In this section, links and demands are assumed to be directed. Undirected links x − y
are replaced with two directed links x → y and y → x.

Notation:

• v1 → v2 …Directed link from node v1 to node v2

• ⟨v1 : v2⟩ …Demand from node v1 to node v2

• x̃a,d …Flow over arc a for demand d (e. g. x̃v1v2,v1v2 flow over arc v1 → v2 for
demand ⟨v1 : v2⟩)

Backflows (e. g. x̃21,12) are also possible, but make practically no sense, so they are set
to 0.

2.3 Link-Demand-Path-Identifier-Based Notation
Demands and links are assigned label indexes. Thus, tables for mapping indexes to actual
demands and links are required.

Notation:

• hi …Demand with index i

• ce …(Known) capacity of link e

• ye …Unknown capacity of link e

• Pi …Number of candidate paths for demand i

• Pij …jth candidate path for demand i

• (v1, e1, v2, e2, . . . , en, vn+1) …n-hop path

• v1 → v2 → . . . → vn+1 …node representation of a path (directed, use − instead
of → for undirected)

• {e1, e2, . . . , en} …link representation of undirected paths

• (e1, e2, . . . , en) …link representation of directed paths

• v …Node

• e …Link

• d …Demand

• p …Path

• V, E, D, P …total numbers of the aforementioned items
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• ξe …Cost of alink e

Example equations:

x11 = 15 (2.8)
x21 + x22 = 20 (2.9)
x31 + x32 = 10 (2.10)

Demands:
Pd∑

p=1

xdp = hd d = 1, . . . ,D (2.11)

Short form, when iterating over all candidate paths:∑
p

xdp = hd d = 1, . . . ,D (2.12)

The vector of all flows (path flow variables) is called the flow allocation vector or
short flow vector:

x = (x1, x2, . . . , xD) (2.13)
= (x11, x12, . . . , x1P1 , . . . , xD1, xD2, . . . , xDPD) (2.14)
= (xdp : d = 1, 2, . . . ,D; p = 1, 2, . . . ,Pd) (2.15)

Important: vectors are represented with bold letters x and scalar values are represented
with normal letters x.

The relationship between links and paths is written down with the link-path inci-
dence relation δedp:

δedp =

{
1 if link e belongs to path p for demand d
0 otherwise

(2.16)

δedp can be written as a table:
e P11 = {2, 4} P21 = {5} P22 = {3, 4}

1 0 0 0
2 1 0 0
3 0 0 1
4 1 0 1
5 0 1 0

The load in link e can be written as:

ye = ye (x) =
D∑

d=1

Pd∑
p=1

δedpxdp (2.17)
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Important: The actual link loads ye are determined by the path flow variables xdp of a
solution and are not the same as the link capacity variables ye.

Cost of a path Pdp:

ζdp =
∑

e
δedpξe, d = 1, 2, . . . ,D p = 1, 2, . . . ,Pd (2.18)

Shortest-Path Allocation Rule for Dimensioning Problems For each demand, allocate
its entire demand to its shortest path with respect to link costs and candidate paths. If
there is more than one shortest path for a given demand, then the demand volume can
be arbitrarily split amon the shortest paths.

2.4 Shortest-Path Routing
For shorted-path routing, demands will only be routed on their shortest paths. The
path length is determined by adding up link costs we according to some weight system
w = (w1,w2, . . . ,wE).

Single Shortest Path Allocation Problem For given link capacities c and demand
volumes h, find a link weight system w such that the resulting shortest paths are unique
and the resulting flow allocation vector is feasible. Zusammenfassung

fortführen
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3.1 Extreme Points and Basic Solutions

S (x) linear unabhängig, wenn
k∑

i=1

αi⃗xi = 0 =⇒ ∀i ∈ {1, . . . , k} : αi = o⃗ (3.1)
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