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1 Einführung



2 Modeling Network Design Problems

2.1 Modeling Design Problems in Link-Path Formulation
Preliminary notation for undirected demands:

• x− y …Link between node x and y

• ĥxy = b …Demand d between nodes x and y (i. e. Demand b bandwidth between
nodes x and y)

• x̂v1v2 = f …Flow on the path between v1 and v2

• x̂v1v2v3 = f …Flow on the path v1, v2, v3

• ĉv1v2 …Capacity of the link between v1 and v2
This generally yields equations for satisfying the demands and inequalities for limiting

the bandwidth to the link capacities, e. g.

x̂12 + x̂132 = 5 (2.1)
x̂13 + x̂123 = 7 (2.2)

... (2.3)
x̂132 + x̂13 + x̂213 ≤ 10 (2.4)
x̂132 + x̂123 + x̂23 ≤ 15 (2.5)

As such a system usually has multiple solutions, an objective function is defined,
which can then be optimized, e. g.:

F = x̂12 + 2x̂132 + x̂13 + 2x̂123 + x̂23 + 2x̂213 (2.6)

In this example, flow routed over two links are weighted with factor two, so direct links
are preferred.

Such an optimization is called a multi-commodity flow problem. The optimal
solution to this problem is marked with an asterisk, e. g.:

x̂∗12 = 5 x̂∗13 = 7 x̂∗23 = 8 (2.7)

Important observations:
• Changing the objective function usually affects the optimal solution to a problem.

• Formulation a good objective function for the particular network is important for
obtaining meaningful solutions.
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2.2 Modeling Design Problems in Node-Link Formulation
In this section, links and demands are assumed to be directed. Undirected links x − y
are replaced with two directed links x→ y and y→ x.

Notation:

• v1 → v2 …Directed link from node v1 to node v2

• ⟨v1 : v2⟩ …Demand from node v1 to node v2

• x̃a,d …Flow over arc a for demand d (e. g. x̃v1v2,v1v2 flow over arc v1 → v2 for
demand ⟨v1 : v2⟩)

Backflows (e. g. x̃21,12) are also possible, but make practically no sense, so they are set
to 0.

2.3 Link-Demand-Path-Identifier-Based Notation
Demands and links are assigned label indexes. Thus, tables for mapping indexes to actual
demands and links are required.

Notation:

• hi …Demand with index i

• ce …(Known) capacity of link e

• ye …Unknown capacity of link e

• Pi …Number of candidate paths for demand i

• Pij …jth candidate path for demand i

• (v1, e1, v2, e2, . . . , en, vn+1) …n-hop path

• v1 → v2 → . . . → vn+1 …node representation of a path (directed, use − instead
of → for undirected)

• {e1, e2, . . . , en} …link representation of undirected paths

• (e1, e2, . . . , en) …link representation of directed paths

• v …Node

• e …Link

• d …Demand

• p …Path

• V, E, D, P …total numbers of the aforementioned items
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• ξe …Cost of alink e

Example equations:

x11 = 15 (2.8)
x21 + x22 = 20 (2.9)
x31 + x32 = 10 (2.10)

Demands:
Pd∑

p=1

xdp = hd d = 1, . . . ,D (2.11)

Short form, when iterating over all candidate paths:∑
p

xdp = hd d = 1, . . . ,D (2.12)

The vector of all flows (path flow variables) is called the flow allocation vector or
short flow vector:

x = (x1, x2, . . . , xD) (2.13)
= (x11, x12, . . . , x1P1 , . . . , xD1, xD2, . . . , xDPD) (2.14)
= (xdp : d = 1, 2, . . . ,D; p = 1, 2, . . . ,Pd) (2.15)

Important: vectors are represented with bold letters x and scalar values are represented
with normal letters x.

The relationship between links and paths is written down with the link-path inci-
dence relation δedp:

δedp =

{
1 if link e belongs to path p for demand d
0 otherwise

(2.16)

δedp can be written as a table:
e P11 = {2, 4} P21 = {5} P22 = {3, 4}

1 0 0 0
2 1 0 0
3 0 0 1
4 1 0 1
5 0 1 0

The load in link e can be written as:

ye = ye (x) =
D∑

d=1

Pd∑
p=1

δedpxdp (2.17)
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Important: The actual link loads ye are determined by the path flow variables xdp of a
solution and are not the same as the link capacity variables ye.

Cost of a path Pdp:

ζdp =
∑

e
δedpξe, d = 1, 2, . . . ,D p = 1, 2, . . . ,Pd (2.18)

Shortest-Path Allocation Rule for Dimensioning Problems For each demand, allocate
its entire demand to its shortest path with respect to link costs and candidate paths. If
there is more than one shortest path for a given demand, then the demand volume can
be arbitrarily split amon the shortest paths.

2.4 Shortest-Path Routing
For shorted-path routing, demands will only be routed on their shortest paths. The
path length is determined by adding up link costs we according to some weight system
w = (w1,w2, . . . ,wE).

Single Shortest Path Allocation Problem For given link capacities c and demand
volumes h, find a link weight system w such that the resulting shortest paths are unique
and the resulting flow allocation vector is feasible. Zusam-

menfas-
sung fort-
führen



3 General Optimization Methdos for
Network Design

3.1 Extreme Points and Basic Solutions
3.1.1 Phase 2

S (x) linear unabhängig, wenn
k∑

i=1

αi⃗xi = 0 =⇒ ∀i ∈ {1, . . . , k} : αi = o⃗ (3.1)

3.2 The Simplex-Algorithm
Note: Solving the system of equations means transforming the target vector into the
basis of the input vector.

If all di are non-negative, the basic solution ist the optimal solution as the diyi are
always subtracted and yi is always non-negative, thus positive di can only decrease the
result and not increase it.

z⃗k is non-negative for all three cases as tk,j is non-positive and α > 0. For items that
are not j and not part of the base, the result is 0 and thus it can be removed from the
sum.

If we find that all dj are negative, the objective function is unbounded from above.
In case 3, ε is always positive due to the way it is defined and the constrains on the

values in this case. As ε is the minimum of the given set, it can not be < 0.
Thus, the resulting vector z⃗ can be in the feasible set.
Basically, we have walked from one corner to the next and restarted the algorithm. In

each calculation, we display b⃗ in another basis. Thus, we need to watch out for cycling
between multiple results. This is what Bland’s rule is used for.

3.2.1 Phase 1
For distinction, a new variable vector y⃗ is introduced. This is later transformed by
extending x⃗. All yi are weighted 1.

This auxiliary problem can be solved by setting x⃗ = o⃗.
Note that the auxiliary problem is to minimize, not maximize the result. As all yi need

to remain positive, the algorithm will approach ∀i : yi = 0 eventually.
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3.2.2 Simplex Tableaus

Page 35 last line: ⃗̂b is actually b⃗…

Example 1:

max x1 + x2 (3.2)
such that:

−x1 + x2 ≤ 1 (3.3)
x1 ≤ 3 (3.4)
x2 ≤ 2 (3.5)

x1, x2 ≥ 0 (3.6)

This needs to be transformed from canonical form into the standard form. For this,
additional variables x3, x4, . . . need to be introduced:

−x1 + x2 + x3 = 1 (3.7)
x1 + x4 = 3 (3.8)
x2 + x5 = 2 (3.9)

x⃗ ≥ o⃗ (3.10)

A basic solution can be obtained directly:

x1 = 0 (3.11)
x2 = 0 (3.12)
x3 = 1 (3.13)
x4 = 3 (3.14)
x5 = 2 (3.15)

From this, the current maximum value is z = 0.
We now work with the simplex tableau.

x1 x2 x3 x4 x5 b
−1 1 1 0 0 1
1 0 0 1 0 3
0 1 0 0 1 2
1 1 0 0 0 0

(3.16)

The last row represents the objective function and the last cell if the last row is z.
This matrix can now be transformed using Gauss-Jordan elimination. During elimi-

nation, we need to ensure that b⃗ remains positive!
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We apply Blant’s rule and find the first column where the value in the last row is
non-zero. Then, we try to set this cell to 0 using the Gauss-Jordan transformation.
Additionally, we transform the matrix to get a unity matrix in the first 3 columns. We
continue until we have a unity matrix in the first 3 columns (or can transform the system
of equations into such a form by changing the order of rows).

Every time a value in the last row is non-zero (except for −z, of course), the result
can be improved further!

∣∣∣∣∣∣∣∣∣
−1 1 1 0 0 1

1 0 0 1 0 3

0 1 0 0 1 2

1 1 0 0 0 0

∣∣∣∣∣∣∣∣∣
←−

1

+

←−−−−

−1

+

(3.17)

=⇒

∣∣∣∣∣∣∣∣∣
0 1 1 1 0 4

1 0 0 1 0 3

0 1 0 0 1 2

0 1 0 −1 0 −3

∣∣∣∣∣∣∣∣∣
←−

−1

+

←−−−−
−1

+

(3.18)

Row 1 can not be subtracted from row 3 as it would result in a negative b3. We can,
however, subtract row 3 from row 1. We obtain a matrix where all coefficients in the last
row are negative. Thus, we have obtained an optimal solution and −z is in the last cell
of the matrix.

=⇒

∣∣∣∣∣∣∣∣∣
0 0 1 1 −1 2

1 0 0 1 0 3

0 1 0 0 1 2

0 0 0 −1 −1 −5

∣∣∣∣∣∣∣∣∣ (3.19)

Thus, we obtain:

x⃗ =


3
2
2
0
0

 (3.20)

This solution indeed satisfies all constraints. After the Gauss-Jordan transformation,
we have obtained the values for tk,j. From the structure of Â we see that(

ÂN
)

k,j
= tk,j (3.21)

for all k ∈ B and j ∈ N. What happens with the tk,j is basically solving three systems of
equations at once.
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Generic form of the matrix:
a11 a12 a13

... a1n b1
...

...
... . . . ...

...
am1 am2 am3 . . . amn bm
c1 c2 c3 . . . cn z

 (3.22)

Example 2:

max x2 (3.23)
such that

x1 − x2 ≤ 1 (3.24)
−x1 + x2 ≤ 2 (3.25)

x1, x2 ≥ 0 (3.26)

First of all, we write this in matrix form. We also introduce slack variables:∣∣∣∣∣∣∣
1 −1 1 0 1

−1 1 0 1 2

1 0 0 0 0

∣∣∣∣∣∣∣ ←−
1

+

←−−−−

−1

+

(3.27)

=⇒

∣∣∣∣∣∣∣
1 −1 1 0 1

0 0 1 1 3

0 1 −1 0 −1

∣∣∣∣∣∣∣ (3.28)

We can see in the second column that c2 is positive and all other values negative or
0. This means that the solution is unbounded! Thus, the solution is infinitely high.

Example 3 contains errors!

3.3 Duality – Motivation
Consider the LOP:

max f (⃗x) = 2x1 + 3x2 (3.29)
such that

4x1 + 3x1 ≤ 12 (I) (3.30)
2x1 + x2 ≤ 3 (II) (3.31)
3x1 + 2x2 ≤ 4 (III) (3.32)

x1, x2 ≥ 0 (3.33)

While this system of equation has more constraints than variables, we get more variables
than constraints as soon as we add slack variables.
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As x1, x2 ≥ 0, we have:

2x1 + 3x1 ≤ 4x1 + 8x2 ≤ 12 (3.34)

Thus, 12 is an upper bound for f (⃗x). If we divide the first equality by 2, we obtain an
even better bound

2x1 + 3x2 ≤ 2x1 + 4x2 ≤ 6. (3.35)

Even better, if we calculate 1
3 · (I) · (II).

2x1 + 3x2 ≤
1

3
(4x1 + 8x2 + 2x1 + x2) (3.36)

≤ 1

3
(12 + 3) (3.37)

= 5 (3.38)

Hence, f (⃗x) can not get larger than 5. How good can an upper bound get this way?
So, we are trying to derive an inequality of the form

d1x1 + d2x2 ≤ h (3.39)

with d1 ≥ 2, d2 ≥ 3 and h as small as possible. So ∀x1, x2 ≥ 0 we have

2x1 + 3x2 ≤ d1x1 + d2x2 ≤ h. (3.40)

Combining the 3 inequalities of the original LOP with some non-negative coefficients
y1, y2, y3 (so that direction of inequalities is not reversed), we obtain

(4y1 + 2y2 + 3y3)︸ ︷︷ ︸
d1

x1 + (8y1 + y2 + 2y3)︸ ︷︷ ︸
d2

x2 ≤ 12y1 + 3y2 + 4y3︸ ︷︷ ︸
h

(3.41)

How to choose yi? We need to ensure that d1 ≥ 2 and d2 ≥ 3 and we want to have h
as small as possible under these constraints. So we have a new LOP:

min 12y1 + 3y2 + 4y3 (3.42)
such that

4y1 + 2y2 + 3y3 ≥ 2 (3.43)
8y1 + y2 + 2y3 ≥ 3 (3.44)

y1, y2, y3 ≥ 0 (3.45)

This is called the dual LOP to the original LOP.
We now show that every feasible solution we can find for the dual LOP is an upper

bound for the original LOP and a feasible solution to the original LOP is a lower bound
for the dual LOP. The original problem is referred to as the primal problem.
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max c⃗⊤x⃗ s. t. Ax⃗ ≤ b⃗, x⃗ ≥ o⃗(P) (3.46)
min b⃗⊤y⃗ s. t. A⊤y⃗ ≥ c⃗, y⃗ ≥ o⃗(D) (3.47)

We can see that y⃗ in the dual problem is multiplied with the transposed matrix. Thus,
if the primal problems has 2 variables and 3 constraints, the dual problem has 3 variables,
but only 2 constraints.

We later show that the optimal solution for both problems is the same and any fea-
sible solution is a bound for the optimal solution. If the primal optimization problem is
unbounded, the dual problem has no solution. Vice versa, if the primal problem has no
solution, the dual problem is unbounded.

3.4 Duality
Note that we now calculate y⊤A in the slide. Let’s recall:

Let A be an m× n matrix, x⃗ be an m× 1 vector, b⃗ be an m× 1 vector.

A · x⃗ = b⃗ (3.48)
⇐⇒ (A · x)⊤ = b⃗⊤ (3.49)
⇐⇒ x⊤ · A⊤ = b⃗⊤ (3.50)

Thus, we can remove the parentheses for the transposition by applying the transposition
for all inner parts of the parentheses.

We can multiply:

• a row vector and a matrix: (1×m) · (m,n) = (1× n)

• a matrix and a column vector: (m× n) · (n× 1) = (m× 1)

3.5 Duality (7)

(P̂) expands upon (P) by adding slack variables:

max c⃗⊤x⃗ (3.51)
s. t.

Ax⃗ + z⃗ = b⃗ (3.52)
⇐⇒ (3.53)

max
(⃗

x⊤, o⃗⊤
)(

x⃗
z⃗

)
(3.54)
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s. t.

(A|I)
(

x⃗
z⃗

)
︸︷︷︸
⃗̂x

= b⃗ (3.55)

Note that ĥB and ĥN have nothing to do with h. ⃗̂y has nothing to do with the y⃗ from
the duality explanation, but it is rather the y⃗ that was the solution of the LOP as in the
simplex algorithm.

3.6 Duality (8)

Â−1
B ÂB⃗̂xB = Â−1

B ÂB⃗̂yB + Â−1
B Ân⃗̂yN (3.56)

⇐⇒ ⃗̂xB = y⃗B + Â−1
B ÂN⃗̂yN (3.57)

⇐⇒ ⃗̂yB = ⃗̂xB − Â−1
B ÂN⃗̂yN (3.58)

As ⃗̂x is a basic solution, ⃗̂xN = o⃗, so there is no ⃗̂xN in the equations.

3.7 Duality (10)

u⃗⊤A ≥ c⃗⊤ (3.59)
u⃗ ≥ o⃗ (3.60)

u⃗⊤ : = c⃗⊤Â−1
B (3.61)

⃗̂c⊤Â−1
B A ≥ c⃗⊤ (3.62)

⃗̂c⊤Â−1
B ≥ o⃗⊤ (3.63)

Ax⃗ = b⃗ (3.64)

⇐⇒ ÂB⃗̂xB =
⃗̂b (3.65)

⇐⇒ Â−1
B ÂB⃗̂xB = Â−1

B
⃗̂b (3.66)
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