
Technische Universität Ilmenau 27. Februar 2024

Vorlesung

Netzalgorithmen

Prof. Dr.-Ing Günter Schäfer

N EXTEX Zusammenfassung von
Adrian Schollmeyer

Inhaltsverzeichnis
1. Introduction 5

1.1. Basic Types of Transmissions . 5
1.2. Structuring a Network . 5
1.3. Routing Algorithms . 5
1.4. Flooding . 6
1.5. Adaptive Routing Algorithms . 6

1.5.1. Centralized Adaptive Routing . 7
1.5.2. Isolated Adaptive Routing . 7
1.5.3. Distributed Adaptive Routing . 8
1.5.4. Graph Model for Routing Algorithms 9
1.5.5. Dijkstra’s Algorithm for Shortest Paths 9
1.5.6. Distance Vector Routing . 9
1.5.7. The Bellman-Ford Algorithm . 10
1.5.8. Comparison of Link State and Distance Vector Algorithms 10

1.6. Hierarchical Routing and Interconnected Networks 11
1.7. Considerations on Traffic Demand and Link Utilization 12
1.8. The Poisson Process . 12
1.9. Little’s Law . 13
1.10. M/M/1 System . 13
1.11. Notion of Routing and Flows . 14
1.12. Multi-Level Networks . 14

2. Modeling Network Design Problems 15
2.1. Link-Path Formulation . 15
2.2. Node-Link Formulation . 15
2.3. Link-Demand-Path-Identifier-Based Notation 16
2.4. Capacitated Problems . 18
2.5. Shortest-Path Routing . 18
2.6. Fair Networks . 19
2.7. Topological Design . 20
2.8. Restoration Design . 20
2.9. Intra-Domain Traffic Engineering for IP Networks 21
2.10. Tunnel Optimization for MPLS Networks 22

3. Optimization Methods 24
3.1. Optimization Problems . 24

Inhaltsverzeichnis 3

3.2. Linear Optimization Problems . 24
3.2.1. Solving LOPs with Two Variables Graphically 25
3.2.2. Canonical form LOPs . 25
3.2.3. Standard Form LOPs . 25

3.3. The Structure of the Feasible Set . 26
3.4. Extreme Points and Basic Solutions . 26
3.5. The Simplex Algorithm . 27

3.5.1. Overview . 27
3.5.2. Phase 2 . 28
3.5.3. Phase 1 . 28
3.5.4. Simplex Tableaus . 29
3.5.5. The Complexity of the Simplex Algorithm 30

3.6. Duality . 30
3.7. Branch and Bound . 31

3.7.1. Branch and Bound for Mixed Integer Problems 32
3.7.2. Cutting planes for MIP . 33

4. Network Design Problems 34
4.1. Simple Design Problem . 34
4.2. Capacitated Problems . 35

4.2.1. Pure Allocation Problem . 35
4.2.2. Bounded Link Capacities . 36
4.2.3. Path Diversity . 36
4.2.4. Generalized Diversity . 37
4.2.5. Lower Bounded Flows . 38
4.2.6. Limited Demand Split . 38

4.3. Modular Flow Allocation . 39
4.4. Non-Linear Link Dimenioning, Cost and Delay Functions 40

4.4.1. Modular Links . 40
4.4.2. Convex Cost and Delay Functions 42
4.4.3. Concave Link Dimensioning Functions 45

4.5. Budget Constraints . 48
4.6. Incremental Network Design Problems . 48
4.7. Representing Nodes . 49

5. Network Resilience 50
5.1. Introduction . 50
5.2. Menger’s and Whitney’s Theorems . 51
5.3. Block Structure of Graphs . 51
5.4. DFS Spanning Trees on Network Graphs 52

5.4.1. Classification of Edges . 52
5.4.2. Computing Articulation Nodes . 53
5.4.3. Computing the Blocks of a Graph 53

Inhaltsverzeichnis 4

A. Letter Salad Decryption Manual 54

Stichwortverzeichnis 55

1. Introduction

1.1. Basic Types of Transmissions
Web • Bunch of data to be transmitted

• No guaranteed arrival times
• Simplest Case: Server and Client are directly connected by a cable

Telephony • Continuous flow of information
• Information must arrive in time
• Simplest Case: Two telephones are directly connected via a cable

1.2. Structuring a Network
As pairwise connection of all entities with each other (thus building a complete graph
of all entities) does not work, other structures need to be established. We distinguish
between end systems (user devices) and switching elements (switches, routers, etc.).

End systems connect to some form of uplink to access/provide information on the net-
work. They do not forward requests of other systems.

Switching elements Forward incoming packets onto the next hop towards its destina-
tion. The “best” next hop is decided by various routing/forwarding tables and
algorithms.

1.3. Routing Algorithms
Routers execute routing algorithms to decide which output line an in coming packet
should be transmitted on.

Connection-oriented services Run the routing algorithm during connection setup and
only once to find one path to forward the packets along for the whole lifetime of
the connection.

Connectionless services Run the routing algorithm either for each packet or periodical-
ly, updating the router’s forwarding table in the process.

Routing algorithms can take a metric into account that assigns costs to network links
and allows administrators to influence routing decisions. Some possible metrics are:

1. Introduction 6

• Financial cost for sending a packet over a link (e. g. when the link is charged per
unit of data transferred).

• Delay (useful to penalize using a link with high delay when trying to prefer links
with low delay)

• Number of hops (commonly used in most routing algorithms deployed on the In-
ternet, aims to reduce the number of routers/networks to traverse to reach a de-
stination)

The cheapest path is also commonly referred to as the shortest path.
Basic types of routing algorithms:

Non-adaptive routing algorithms do not base routing decisions on the current state of
the network.

Adaptive routing algorithms take into account the current network state (e. g. distance
vector routing, link state routing).

1.4. Flooding
Flooding is a simple strategy, sending every incoming packet to every outgoing link except
the one it arrived on. This leads to many duplicated packets in the network, but leads to
the packet almost certainly arriving at the destination (the only exception being broken
links partitioning the network into two parts).

To reduce the number of duplicated packets, strategies can be used:

Solution 1: Hop counting Have a hop counter in the packet header, which is decremen-
ted by each router. If the packet stays in the network for too long, the hop counter
goes to 0 and the packet is dropped. Ideally, the hop counter should be initialized
to the length of the shortest path from the source to the destination.

Solution 2: Sequence numbers Each router maintains a sequence number and a table
of sequence numbers it has seen from other routers. The first-hop router increments
and adds its sequence number to each incoming packet from a host. Each router
only forwards incoming packets, if it hasn’t seen this sequence number from the
first-hop router, yet. Thus, packets that have already been seen are discarded.

1.5. Adaptive Routing Algorithms
Non-adaptive routing algorithms pose problems:

• Non-adaptive routing algorithms can’t cope with dramatic changes in traffic levels
in different parts of the network.

• Non-adaptive routing algorithsm are usually based on average traffic conditions,
but lots of computer traffic us extremely bursty (i. e. very variable in intensity).

1. Introduction 7

Thus, adaptive routing algorithms are commonly used to make routing decisions.
Three types can be distinguished:

Centralized adaptive routing Has only one central routing controller making routing
decisions.

Isolated adaptive routing Is based on information local to each router. No exchange of
information between routers is required.

Distributed adaptive routing Uses periodic exchanges of information between routers
to compute and update routing information to be stored in the local forwarding
table.

1.5.1. Centralized Adaptive Routing
At the heart of Centralized Adaptive Routing is a central routing controller, which

• periodically collects link state information from routers

• calculates routing tables for each router

• dispatches updated routing tables to each router

The centralized approach is severely limited by the routing controller. If it goes down,
the routing becomes non-adaptive, making the network vulnerable to outages. Further-
more, the controller needs to handle a great deal of routing information, making it not
only a single point of failure, but also a bottleneck for scalability and performance of the
network.

1.5.2. Isolated Adaptive Routing
The basic idea is to make routing decisions solely based on information available locally
in each router, e. g.:

• Hot potato

• Backward learning

Hot potato routing:

• Forward the incoming packet to the output link with the shortest queue

• Do not care where the selected output link leads

• Not very effective

Backward learning:

• Maintain a local forwarding table with next hop, hop count and output link

1. Introduction 8

• Incoming packets update the fowarding table entry of the sender if their hop count
is better than the entry’s current hop count

• Forward packets based on the forwarding table, random route (hot potato, flood)
the packet if no entry for the destination exists.

• Remove/forget stale entries in the forwarding table to account for deterioration of
routes (e. g. in case of link failures)

Ethernet switches commonly use backward learning to maintain forwarding tables for
MAC addresses, usually falling back to flooding packets if no entry for the destination
MAC exists in their local forwarding table.

1.5.3. Distributed Adaptive Routing
The central goal is to determine a “good” path (i. e. a sequence of routers) through the
network from source to destination. For calculations, the network is abstracted into a
graph consisting of:

Routers represented by nodes

Links represented by edges

Costs assigned to edges, representing link costs

Routing algorithms can be classified in several ways:

• Global or decentralized information
Decentralized All routers know only a portion of the network, i. e. their physi-

cally connected neighbors and link costs to their neighbors. By exchanging
information with neighbors, routes to other destinations can be calculated.
Examples: BGP (path vector), RIP (distance vector)

Global By exchanging information, routers gain knowledge of the full network
topology and the cost of each link. This is used to compute cheap routes to
each destination in the network. Examples: OSPF, IS-IS

• Static or dynamic routes
Static Routes change only slowly over time, e. g. if they are statically configured

by network administrator.
Dynamic Routes change more quickly in response to link cost changes and require

periodic updates of routing information.

1. Introduction 9

1.5.4. Graph Model for Routing Algorithms
• V = {v1, v2, . . . , vn} the set of nodes (routers)

• E = {e1, e2, . . . , em} ⊆ V2 the set of edges (links)

• c : V × V → Z>0 cost of an edge

• s ∈ V start node (i. e. the node for which the shortest path shall be found)

• d [i] cost from s to node vi

• p [i] index j of the predecessor vj of vi on the shortest path from s to vi.

• δ (s, v) cost of the shortest path from s to v

1.5.5. Dijkstra’s Algorithm for Shortest Paths
Maintain a set N (initially empty) of nodes for which shortest have been found. For each
node i that is not directly connected to s, set d [i] = ∞, otherwise d [i] = c (s, vi). Starting
from s, take vi ∈ V \ N with the lowest d [i]. The path from vi’s predecessor to vi is the
shortest path. Update d [j] for neighbors vj ∈ V \ N of vi, wherever d [i] + c (vi, vj) < d [j]
(i. e. the path from s to vj via vi is shorter than the previously known path from s to vj).
Set N := N ∪ {vi}. This results in finding the shortest paths from s to each node in the
network.

Complexity:

• O
(
|V|2

)
• Optimal in dense graphs with |E| ≈ |V|2

• Efficient implementations with O
(
|V| · log |V| + |E|

)
are possible when using

Fibonacci-Heaps.

1.5.6. Distance Vector Routing
For distance vector routing, each node has its own table for DX (Y,Z), listing the cost
from X to Y via Z as next hop. Distance vector routing has a few favorable properties,
useful in large networks like the Internet:

Iterative The algorithm works iteratively, until no nodes exchange information (i. e. no
updated information is transmitted through the network)

Asynchronous Information does not need to be exchanged in lock step. Instead any
node can send updated information at any time.

Distributed Each node only needs to communicate with its directly attached neighbors.

1. Introduction 10

Initially, all routers only know the costs to their neighbors and set the cost to any other
destination to ∞ (aka. unreachable). Afterwards they notify neighbors of their costs to
each destination they know of. Then, distance vector routing algorithms continuously
wait for changes in local link costs or link update messages from neighbors. Whenever
such a change occurs, the information is used to update the local distance table. If any
changes to shortest (!) paths have occured, neighbors are notified of the updated shortest
path costs.

The main problem of distance vector routing is the count to infinity problem. If the
link cost for a link suddenly increases (possibly to ∞), the network might now have a
shortest path to a destination going in a circle for some time, while the change in link
cost is continuously increased in the network until the new cost for the link is reached
or an alternative, shorter path is found. This increases the time to find a new shortest
path dramatically! This issue can be mitigated with poisoned reverse, i. e. when Z routes
to X via Z and Y notifies Z that the cost to X changed, Z notifies Y that its cost to X is
∞ to prevent Y from routing to X via Z (as Z would want to route to X via Y, making
the packets go in a loop).

1.5.7. The Bellman-Ford Algorithm
The Bellman-Ford algorithm is capable of solving the problem of computing shortest path
in graphs with edges with negative costs and is the basis for distance-vector routing. Its
only limitation is that there must be no cycles with negative total cost, as otherwise the
shortest path’s cost will go to −∞ (as continuously traversing such a cycle will inifinitely
reduce the total cost). The algorithm can detect if such cycles with negative total cost
exist.

The algorithm iteratively improves the estimated cost to reach a node by iterating
|V|−1 times over all edges and check if the current estimate of the node can be improved
by taking any of the connected edges, given the current estimate cost. As this algorithm
always checks all edges, it has a higher running time of O

(
|V| · |E|

)
.

Negative cost cycles can be detected by running the algorithm |V| times. If the cost
to any node has changed in the |V|th iteration, there must be a negative cost cycle.

1.5.8. Comparison of Link State and Distance Vector Algorithms
Message complexity How many messages are exchanged?

• Link State: with n nodes, E links, O (n · E) messages are sent by each node
• Distance Vector: exchange only between neighbors, but variable number of

messages and variable convergence time

Speed of Convergence How long does it take until the routing table doesn’t change
after a link state change has occured?

• Link State: O
(
n2
)

algorithm requires O (n · E) messages
• Distance Vector: variable convergence time, in part caused by routing loops

and the count-to-infinity problem

1. Introduction 11

Robustness What happens if a router malfunctions?
• Link State:

– Node can advertise incorrect link cost
– Invalid routing table calculations only affect the malfunctioning router

• Distance Vector:
– Nodes can advertise incorrect path costs
– Each node’s table is used (in part) by other routers, so errors can propa-

gate through the network

1.6. Hierarchical Routing and Interconnected Networks
So far, an idealized scenario with identical routers and a “flat” network was assumed.
In practice, networks scale to hundreds millions of destinations, making storing detailed
routing tables for all destinations in the whole network technically impossible, due to
memory limitations in routers and link overloads caused by routing table exchanges
between routers. Furthermore, administrative autonomy in parts of the network (like in
the Internet’s autonomous systems) should allow for network administrators to control
the routing (especially the routing protocol in use) in their network, independent of the
rest of the network.

In interconnected networks, data transmission usually involves multiple networks. Rou-
ting can be distinguished into two levels:

Intradomain routing inside autonomouse systems.

Interdomain routing between autonomous systems

In the Internet, interdomain routing is done using the Border Gateway Protocol (BGP),
which operates on the AS level and considers every AS as one hop. For intradomain
routing, each network administrator can choose their AS’s interior routing protocol
(e. g. OSPF, RIP, iBGP, IS-IS).

For sending traffic between ASes, Internet Service Providers (ISPs) have peering agree-
ments and connections with and to each other, making a data transfer possible. Depen-
ding on the policies and available links, traffic may not be able to be sent directly from
the source ISP to the destination ISP, but needs to be sent to a different transport
provider network first (transit).

Each network operator has to make decisions regarding how to handle the traffic in
their network, including

• allocating enough capacity of routers and links,

• choosing a routing algorithm,

• setting link costs.

1. Introduction 12

This requires estimation of traffic demand in the network. This can be displayed as
demand volume matrix H : {1, . . . , n}2 → N, denoting the traffic demand volume between
nodes vi and vj as H [i, j], also abbreviated hij later on.

1.7. Considerations on Traffic Demand and Link Utilization
To understand constraints on maximum link utilization, a few basic facts about the
natur of Internet traffic need to be recapitulated:

• Packets are delayed in every router due to store-and-forward processing and queu-
eing.

• Traffic congestion can occur in parts of the Internet.

• Packets may be dropped if arriving at a router with full output queues.

The task of a network designer is to design the network such that delay, congestion
and the probability of packet drops are minimized, while also allowing for a reasonable
utilization of the network. This is complicated by the fact that traffic arrival patterns and
packet sizes in the Internet are random. In order to characterize Internet traffic behavior,
large scale measurements are needed to gain insights about traffic arrival distribution
and packet size distribution.

Important observation: Internet traffic does not follow commonly known distributions
like normal or exponential distributions, but shows self-similar characteristics and can
have heavy-tailed distributions, i. e. distributions with high skewness.

For simplicity, a few assumptions are made:

• Packets arrive according to a Poisson process with rate λ:

Pn (t) =
(λt)n

n! e−λt (1.1)

(on average, one arrival in every time interval of length 1
λ).

• Packet size is exponentially distributed, leading to exponentially distributed service
times with rate µ

Considering only one router, such a system can be thought of as an M/M/1 queueing
system.

1.8. The Poisson Process
Let A (t) (t ≥ 0) be the number of packets arriving in (0, t]. Requirements:

• A (0) = 0

1. Introduction 13

• Idependence of teh number of arrivals in disjoint time periods

• Singularity of arrival events (packets never arrive in parallel)

• Stationary process of arrivals: the probability how many arrivals happen in a time
interval only depends on the interval length.

Denote the probablity that n packets arrive in (0, t] as follows:

Pn (t) := Pr [A (t) = n] (1.2)

Due to the aformentioned requirements, we have

P0 (0) = 1 ∀n > 0 : Pn (0) = 0 (1.3)

After a bunch of math that no one in their right mind can memorize, we obtain:

Pn (t) =
(λt)n

n! e−λt (1.4)

1.9. Little’s Law
Let Arrival (T) be the number of packets arrived until time T, Wi (T) be the waiting
time of packet i at time T, N (T) be the number of packets in the system at time T.

We are interested in the accumulated (total) waiting time of all jobs that ever arrived
in the system until time T. This can be computed either as the sum of waiting times
of all packets arrived until time T or as the integral over the number of packets in the
system during (0,T]. Both methods lead to the same result.

Now, let λ (T) be the average number of packets in (0,T], W (T) be the average waiting
time of a packet and N (T) be the average number of packets in the system. Then we
get Little’s Law:

λ · W = N (1.5)

1.10. M/M/1 System
The number of packets in the system (queue size) at discrete points in time δ can be
described as a Markov chain, with the probability of the queue size increasing being λδ
and the probability of the queue size decreasing being µδ. Let pn denote the probability
of the system having queue size n. We obtain

pn = (1− ρ) ρn ρ =
λ

µ
(1.6)

N =
λ

µ− λ
(1.7)

W =
1

µ− λ
(1.8)

1. Introduction 14

Thus, with ρ → 1 (i. e. the system load is so high that on average each packet takes as
long to process as new packets arrive on average), the average waiting time and queue
size go to infinity. Since in reality the queue size is limited, this will lead to packets being
dropped.

If packets have average size Kp bits and link capacity is C bits per second, then the
average service rate of the link is

µp =
C
Kp

pps (packets per second) (1.9)

If the average arrival rate is λp pps, then the average delay is given by

D (λp, µp) =
1

µp − λp
(1.10)

This leads to an important insight: To maintain low delays, link utilization should be
kept low, e. g. below 50%. Thus, when link utilization reaches a certain threshold, it
should be upgraded. From a delay perspective, it’s better to have one high bandwidth
link than multiple lower bandwidth links. This is often referred to as the statistical
multiplexing gain.

Contrary to this, fault tolerance may call for having multiple links. Also, on a single
link, misbehaving traffic flows are difficult to control.

1.11. Notion of Routing and Flows
Routing can not only be interpreted as the decision how an individual packet may be
transported in the networks, but also how ensemble traffic may be routed between the
same two points (e. g. points of presence, data centers). For the remainder of the lecture,
this second notion is used and instead of making routing decisions for individual packets,
decisions for whole flows are made. Routing decisions then need to stay withing capacity
constraints or can influence capacity decisions.

1.12. Multi-Level Networks
When doing interconnects over transit providers, the network architecture can be viewed
both in the transport view (i. e. the (underlay) network of the transport provider) as well
as the traffic view (i. e. the flow of traffic between nodes in the network).

Links in the traffic network are logical links and must be mapped to links/paths in the
transport network. The mapping can change the properties of the network from one view
to the other. There can be logical links between nodes in the traffic view for nodes that
are not physically connected in the transport view, e. g. if traffic between these nodes
needs to be transported over a few switches.

2. Modeling Network Design Problems

2.1. Link-Path Formulation
• ĥ12 = 5… undirected demand between node 1 and 2 is 5, also noted as ⟨1, 2⟩

• x̂132… amount of flow over path 1, 3, 2

• ĉ12… capacity of link 1–2

• a∗… optimal solution for variable a (e. g. x̂∗132)

These can be combined to obtain systems of equations, which usually have multiple
solutions. The answer to the question, which of these solutions is of best interest, depends
on the goal of network design, e. g.:

• Minimize the total routing cost (if links are annotated with a link cost)

• Minimize congestion of the most congested link

If the objective is to minimize the total routing cost and the cost of routing one unit
of traffic over one link is set to 1 for all links (i. e. the goal is to minimize the number of
hops for each route), an objective function might be:

F = x̂12 + 2x̂132 + x̂13 + 2x̂123 + x̂23 + 2x̂213 (2.1)

Note that flows routed over two links are weighted with factor 2. Such an optimization
task is called a multi-commodity flow problem. The inverse objective (try to avoid direct
links) can also occur, e. g. in air travel networks.

Link-path formulation is one of multiple ways to describe network optimization pro-
blems. It is appropriate for networks with undirected links as well as with directed links.

2.2. Node-Link Formulation
In this scenario, links and demands are assumed to be directed, so a link 1–2 is substituted
with two directed links (“arcs”) 1 → 2 and 2 → 1. Instead of tracing all path flows
realising the demand, the total link flow for the demand on each link is considered.
Undirected demands ⟨1, 2⟩ are replaced with directed demands ⟨1 : 2⟩.

Looking from the point of view of a fixed node that is not end point of the flow, there
are flows coming in and going out of that node. The total incoming flow must then be
equal to the total outgoing flow. The demand of source nodes is the total outgoing flow

2. Modeling Network Design Problems 16

minus the total incoming flow, while for sink nodes the demand is the total incoming
flow minus the total outgoing flow.

This gives the following notation:

• x̃13,12… flow over arc 1 → 3 for demand ⟨1 : 2⟩

For each demand and each node, all possible direction of paths (including backflows)
are part of the total flow equation, although backflows can be safely set to 0, as they make
no sense from a practical viewpoint. Additionally, the source node includes a −ĥ term
and the sink node includes a ĥ term to account for the imbalance in incoming/outgoing
flow caused by the demand (account for the conservation of flow).

A simple example for a demand ⟨1 : 2⟩ with nodes 1, 2, 3 might be:

x̃12,12 + x̃13,12 = ĥ12 (2.2)
−x̃13,12 + x̃32,12 = 0 (2.3)
−x̃12,12 − x̃32,12 = −ĥ12 (2.4)

Capacity constraints are modeled as before:

x̃12,12 + x̃12,13 ≤ ĉ12 (2.5)

Note that the two notations shown until now can become very cumbersome for larger
networks:

• There might be no demand between some or many pairs of nodes

• There are no links between most pairs of nodes

Still, the two formulations would require inclusion of these cases, although they are not
relevant to the solution at all.

2.3. Link-Demand-Path-Identifier-Based Notation
This formulation assignes indices to demands and capacities, yielding a simpler notation:

• hi… the demand with index i

• cj… the (known) capacity of the jth link

• yj… the unknown capacity of the jth link (dimensioning problem)

• xij… the flow of demand i over link j

• v1 − v2 − . . .− vn+1… undirected path in node representation

• v1 → v2 → . . . → vn+1… directed path in node representation

• {e1, e2, . . . , en}… undirected path in link representation

2. Modeling Network Design Problems 17

• (e1, e2, . . . , en)… directed path in link representation

• ξi… cost of link ei

• Pij… candidate path j for demand i

• δedp : e×Pij → {0, 1}… is link ek on candidate path Pij, link-path incidence relation

The vector of all flows is called the flow allocation vector or flow vector:

x = (x1, x2, . . . , xD) (2.6)
= (x11, x12, . . . , x1P1 , . . . , xD1, xD2, . . . , xDPD) (2.7)
= (xdp | d = 1, 2, . . . ,D; p = 1, 2, . . . ,Pd) (2.8)

The table for the link-path incidence relation δedp contains a 1 whenever a link e is
used for satisfying a demand d over a path p, and 0 if the link is not used in that path.
Note that δedp is not a variable, but fixed!

This us a notation for the load ye of link e and capacity constraints:

ye =

D∑
d=1

Pd∑
p=1

δedpxdp (2.9)

∀e ∈ {1, 2, . . . ,E} :

D∑
d=1

Pd∑
p=1

δedpxdp ≤ ye (2.10)

The general formulation of the simple dimensioning problem is:

min F =
E∑

e=1

ξeye (2.11)

subject to

∀d ∈ {1, . . . ,D} :

Pd∑
p=1

xdp = hd demand (2.12)

∀e ∈ {1, . . . ,E} :

D∑
d=1

Pd∑
p=1

δedpxdp ≤ ye capacity (2.13)

x ≥ 0 variables (2.14)
y ≥ 0 (2.15)

Depending on whether link capacites are known (fixed) or unknown (to be chosen),
ci and yi are used, respectively. Problems with unknown link capacities are referred to
as dimensioning problems or uncapacitated problems, contrary to capacitated problems
where link capacities are known. When variables can take continuous values, then for
any optimal solution, the capacity constraints become equalities, as otherwise cost would
arise for unused capacity (which is never optimal).

2. Modeling Network Design Problems 18

The cost of a path Pdp is given by:

ζdp =
E∑

e=1

δedpξe d ∈ {1, . . . ,D} , p ∈ {1, . . . ,Pd} (2.16)

Shortest-Path Allocation Rule for Dimensioning Problems: For each demand, alloca-
te its entire demand to its shortest path with respect to link costs and candidate paths.
If there is more than one shortest path for a given demand, then the demand volume
can be arbitrarily split among shortest paths.

This rule works for simple dimensioning problems, but might not work if further
constraints are to be taken into account. Further constraints might very well be imposed
on the problem:

• Non-bifurcated flows require each demand to be satisfied by exactly one path flow.

• To ensure graceful degradation in case of node or link failures, flows might need to
be partitioned among several node-disjoint paths.

Depending on the demands and capacities, non-bifurcated solutions might not even be
possible, although bifurcated solutions exist.

2.4. Capacitated Problems
In some cases, link capacities are given and the task is to find a solution that satisfies
the specified demands, while staying within the capacity bounds. Such problems can be
formulated in the following general notation:

∀d ∈ {1, . . . ,D} :

Pd∑
p=1

xdp = hd demand constraints (2.17)

∀e ∈ {1, . . . ,E} :

D∑
d=1

Pd∑
p=1

δedpxdp ≤ ce capacity constraints (2.18)

x ≥ 0 constraints on variables (2.19)

Sometimes there might be no objective function, rendering any feasible solution ac-
ceptable. If flow routing cost is to be minimized, these problems are similar to the first
problem.

2.5. Shortest-Path Routing
Shortest-Path routing is commonly used in networks. Thus, the network design needs to
anticipate that demands will only be routed on their shortest paths. The length of the
path is determined by adding up link costs we according to some weight system w.

2. Modeling Network Design Problems 19

Setting the link capacities to be equal to the computed link loads of the shortest-path
routing solution gives a (trivially) feasible solution. In general, however, the objective is
to find a solution that allows to respect the given link capacities and instead looks for
the appropriate weight system.

Single Shortest Path Allocation Problem For given link capacities c and demand
volumes h, find a link weight system w such that the resulting shortest paths are unique
and the resulting flow allocation vector is feasible.

This problem is usually complex, as non-bifurcated solutions may not exist even
though bifurcated solutions do, non-bifurcated solutions (if they exist) are usually hard
to determine and a weight system inducing an existing single-path flow solution might
be impossible to find.

If there are multiple shortest paths, one might be interested in splitting demand vo-
lumes amoung multiple shortest paths. Such a rule which is used in OSPF routing is
the equal-cost multi-path (ECMP) rule, aiminng to equally split the outgoing demand
volume over all outgoing next hops with equal cost for a fixed destination. However, such
a simple might fail if link weights are not set appropriately.

2.6. Fair Networks
In the Internet, demands are often not fixed but elastic, meaning that each demand can
consume any bandwidth assigned to its path. In such a case, capacity constraints are
given, for the demands hd no particular values are assumed.

An obviously initial solution is to assign each demand volume on its lower bound.
If this does not satisfy the capacity constraints, there is no feasible solution at all. If,
however, feasibility is assured, being able to carry more than the minimum required
bandwidth while at the same time giving a fair share of bandwidth to all flows might be
desired.

The best-known general fairness criterion is Max-Min-Fairness (MMF), also called
equity:

• If no lower bounds are specified, assign the same maximal value to all demands.

• If there is still capacity left, assign the same maximal value to all demands that
can still make use of that capacity.

One might be interested in a compromise between MMF and greedily maximizing
network throughput. One such fair allocation principle is Proportional Fairness (PF)
and is realized by maximizing a logarithmic revenue function:

∀d ∈ {1, . . . ,D} ∀p ∈ {1, . . . ,Pd} : R (x) =
∑

d
rd ln

(∑
p

xdp

)
(2.20)

with rd being the revenue associated with demand d. If all demands are of equal im-
portance, then rd = 1 for all demands d. This function is no longer linear. However, it

2. Modeling Network Design Problems 20

ensures that no demand is allocated an overall path flow sum of 0 and makes assigning
(unfairly) high values “unattractive”. By introducing a linear approximation of R, the
PF problem can be solved, as is shown later.

Solving the MMF capacitated problem is more complicated, since in general it is not
enough to find a flow allocation vector that maximizes the minimal flow Xd over all
demands d. Even if such a flow vector X is found, then in general some link capacities
might still be free and can be used to increase flow allocations for at least a subset of
demands.

2.7. Topological Design
When installing a link in a network, there is usually a fixed cost that is independent of
the capacity of the link (e. g. cabling cost). In order to account for this, such an opening
cost κe needs to be modeled in the objective function (which is to be minimized):

F =
∑

e
ξeye +

∑
e

κeue (2.21)

where ue is a binary variable indicating whether link e is installed or not.
To force the capacity ye to be 0 whenever the link e is not installed, a large additional

constant ∆ together with additional constraints is introduced,

∀e ∈ {1, . . . ,E} : ye ≤ ∆ue (2.22)

2.8. Restoration Design
So far, the network was always considered to be in operational state, without accounting
for link or node failures. Now, let’s assume the following failure model:

• Links can be either fully functional or completely failed

• No more than one link fails at a time

• Failure state s (s ∈ {1, . . . , |E|}) indicates that s links have failed
To solve the restoration design problem (RDP), additional indexes s are introduced to

the path flow variables xdps, referring to that particular flow in case of failure state s.
This also requires reformulating the capacity constraints, e. g.:

s = 0 : x120 + x310 ≤ y1 (2.23)
s = 1 : x121 + x311 ≤ 0 (2.24)
s = 2 : x122 + x312 ≤ y1 (2.25)

Additionally, the notation αes is introduced, indicating whether link e is up or not
obtaining the following constraints:

∀s ∈ {0, . . . , S} ∀e ∈ {1, . . . ,E} :
∑

d

∑
p

δedpxdps ≤ αesye (2.26)

2. Modeling Network Design Problems 21

A robust network can be considerably more expensive than the cheapest network
without failure considerations.

2.9. Intra-Domain Traffic Engineering for IP Networks
In this scenario, intra-domain routing is operated by an ISP that has control over the
network topology, routing algorithm and link weight system. Due to service level agree-
ments or experience obtained via measurements, the ISP knows the demands between
nodes of their network. A common objective of intra-domain routing optimization is to
minimize the (average) delay experience by data packets. Thus, the goal is to minimize
the maximum utilization over all links.

A commonly used intra-domain routing protocol is OSPF, which is based on Dijkstra’s
algorithm, which calculates shortest paths based on some weight system w. Thus, the
goal is to identify a weight system w such that the maximum link utilization of the
network is minimized while satisfying all given demands and staying within capacity
constraints. This results in path flows and total link loads begin defined with respect
to w, as these are now induced by the weight system influencing how OSPF distributes
traffic:

∀d ∈ {1, . . . ,D} :
∑

p
xdp (w) = hd (2.27)

∀e ∈ {1, . . . ,E} : ye (w) =
∑

d

∑
p

δedpxdp (w) ≤ ce (2.28)

The maximum r over all link utilizations can be computed and is needed to ensure that
all link loads stay below cer:

r = max
{

ye (w)

ce

∣∣∣∣∣ e = 1, . . . ,E
}

(2.29)

∀e ∈ {1, . . . ,E} : ye (w) =
∑

d

∑
p

δedpxdp (w) ≤ cer (2.30)

This leads to the following optimization problem:

min F = r (2.31)
subject to

∀d ∈ {1, . . . ,D} :

Pd∑
p=1

xdp (w) = hd (2.32)

∀e ∈ {1, . . . ,E} : ye (w) =
D∑

d=1

Pd∑
p=1

δedpxdp (w) ≤ cer (2.33)

r = max
{

ye (w)

ce

∣∣∣∣∣ e = 1, . . . ,E
}

(2.34)

2. Modeling Network Design Problems 22

With r being continuous and we being non-negative integers.
For this to work, k shortest paths for every attempted weight system vector w need

to be found. If r∗ < 1, no link will be overloaded. However, if r∗ is close to 1, congestion
is likely to occur. For r∗ > 1 there is at least one overloaded link, i. e. the demands can
not be satisifed appropriately.

2.10. Tunnel Optimization for MPLS Networks
Multi-Protocol Label Switching (MPLS) is an approach that introduces virtual connec-
tions into packet switched networks in order to speed up processing times for routers
and allow for traffic engineering. In order to transport traffic in an MPLS network, a
so-called label switched path is set up from the source (ingess MPLS node) to the desti-
nation (egress MPLS node). Tunneling (by making use of label stacking) can be used to
handle “similar” traffic in an aggregated way, allowing for different traffic capabilities
like putting traffic of similar QoS classes into the same tunnels for special treatment and
easy re-routing in case of congestion or link failures.

In order not to overload routers with too many tunnels, which would increase the
processing overhead, it is desirable to limit the number of tunnels per router and/or
link. Thus the optimization challenge is to carry different traffic classes in an MPLS
network through the creation of tunnels such that the number of tunnels per node/link
is minimized and the load is balanced amoung routers/links. For this, the same notation
as before can be used, with xdp now denoting the fraction of demand that is routed over
path Pdp, resulting in the demand constraint:

∀d ∈ {1, . . . ,D} :

Pd∑
p=1

xdp = 1 (2.35)

Note that xdp ∈ [0, 1] and the absolute flow transported is now hd · xdp.
To avoid path flows with very low fractions, a lower bound ε is introduced together

with binary variables udp indicating whether the lower bound is satisfied or not:

∀d ∈ {1, . . . ,D} ∀p ∈ {1, . . . ,Pd} : εudp ≤ xdp (2.36)
∀d ∈ {1, . . . ,D} ∀p ∈ {1, . . . ,Pd} : xdp ≤ udp (2.37)

Capacity feasibility constraints:

∀e ∈ {1, . . . ,E} :

D∑
d=1

hd

Pd∑
p=1

δedpxdp ≤ ce (2.38)

The number of tunnels on link e will be: ∑
d

∑
p

δedpudp (2.39)

The goal is now to minimize the number r representing the maximum number of
tunnels over all links:

2. Modeling Network Design Problems 23

min F = r (2.40)
subject to

∀d ∈ {1, . . . ,D} :

Pd∑
p=1

xdp = 1 (2.41)

∀e ∈ {1, . . . ,E} :

D∑
d=1

hd

Pd∑
p=1

δedpxdp ≤ ce (2.42)

∀d ∈ {1, . . . ,D} ∀p ∈ {1, . . . ,Pd} : εudp ≤ xdp (2.43)
∀d ∈ {1, . . . ,D} ∀p ∈ {1, . . . ,Pd} : xdp ≤ udp (2.44)

∀e ∈ {1, . . . ,E} :
D∑

d=1

Pd∑
p=1

δedpudp ≤ r (2.45)

and xdp continuous and non-negative, udp binary and r integer.
This problem has both continuous and binary variables, whilch the constraints and

objective function are linear. It is an example for a mixed-integer linear programming
problem (MIP) . Finding exact solutions for MIP is more difficult than for linear opti-
mization problems, branch-and-bound and banch-and-cut being established techniques
to solve such problems.

3. Optimization Methods

3.1. Optimization Problems
An optimization problem is given by a set M and a function f : X → R with M ⊆ X. The
usual terminology is as follows:

• M is called the feasible set

• f is called the objective function

• Elements of M are called feasible solutions

• x∗ ∈ M is an optimal solution if ∀x ∈ M : f (x∗) ≥ f (x), i. e.

f (x∗) = max {f (x) | x ∈ M} (3.1)

An optimization method is an algorithm that computes an optimal solution x∗ given
the input (M, f), if there is any.

There is no need to deal with minimaztion problems separately as they can be easily
converted into a maximization problem.

3.2. Linear Optimization Problems (LOP)
An optimization problem (M, f) is a linear optimization problem (LOP) if M ⊆ Rn for
some n ∈ N consists of all x⃗ ∈ Rn satisfying a finite set of linear inequalitites and/or
linear equations, and f : Rn → R is a linear function.

Example:

max f (x, y) = x + 3y (3.2)
subject to

−x + y ≤ 1 (3.3)
x + y ≤ 2 (3.4)

x, y ≥ 0 (3.5)

Notation:

• Rn is the set of all column vectors x⃗ = (x1, . . . , xn)
⊤ with x1, . . . , xn ∈ R

• a⃗ ≤ b⃗ iff ak < bk for all k ∈ {1, . . . , n}

3. Optimization Methods 25

• o⃗ denotes a zero vector

• I denotes an identity matrix

• ∥⃗x∥ =
√

x21 + . . .+ x2n denotes the euclidian norm of x⃗

3.2.1. Solving LOPs with Two Variables Graphically
Each inequality defines a boundary line, which can be plotted in a diagram. These
together are boundaries to the feasible set. By setting c = f (⃗x) for some c, a contour line
can be drawn, showing where f (⃗x) = c holds. By increasing c, this contour line is shifted
towards the maximum value, until it reaches a “corner” with the maximum value.

3.2.2. Canonical form LOPs

max f (⃗x) = c⃗⊤x⃗ (3.6)
subject to

Ax⃗ ≤ b⃗ (3.7)
x⃗ ≥ o⃗ (3.8)

With A ∈ Rm×n being a real matrix with m rows and n columns and b⃗ ∈ Rm being a
real column vector with m entries.

To transform any LOP into a LOP in canonical form:

• If there is a variable xk subject to xk ≤ 0 (the variable must be non-positive),
replace every appearance of xk with −xk and replace xk ≤ 0 with xk ≥ 0.

• If a variable xk is unrestricted (can be both positive and negative), replace every
appearance of xk by x+k − x−k and let x+k ≥ 0 and x−k ≥ 0.

• Replace akx⃗ ≤ bk with −akx⃗ ≥ −bk and akx⃗ = bk with akx⃗ ≤ bk and akx⃗ ≥ bk.

3.2.3. Standard Form LOPs

max f (⃗x) = c⃗⊤x⃗ (3.9)
subject to

Ax⃗ = b⃗ (3.10)
x⃗ ≥ o⃗ (3.11)

With A ∈ Rm×n and b⃗ ∈ Rm with b⃗ ≥ o⃗.
To transform a LOP into standard form, every occurence of ≤ must be replaced with

= as well as the introduction of slack variables y⃗, which are simply added to the left-hand

3. Optimization Methods 26

side of the equation to allow the actual xk to be lower than bk. The resulting equations
can be rewritten as

(A|I)
(

x⃗
y⃗

)
= b⃗ (3.12)

If b⃗ does not satisfy b⃗ ≥ o⃗ (i. e. if some bk are negative), multiply these rows by −1.
LOPs in standard form are systems of linear equations Ax⃗ = b⃗. As such, the number

of irredundant equations can be compared to the number of variables to get information
about how many solutions exist:

• If there are more irredundant equations than variables, no solution to the system
of equation exists.

• If there are as many irredundant equations as variables, there is exactly one solu-
tion.

• If there are less irredundant equations as variables, there are infinitely many solu-
tions (and as such, an optimal solution must be determined).

3.3. The Structure of the Feasible Set
A subset X ⊆ Rn is called:

convex if for any two points x⃗1, x⃗2 ∈ X the whole straight line segment is in X, i. e. the
straight line connecting x⃗1 and x⃗2 never leaves X

closed if the limit of every convergent sequence in X is in X too

bounded if there is K ∈ R such that ∥⃗x∥ ≤ K for all x⃗ ∈ X, i. e. there is an upper limit
to the distance of all points in X from o⃗.

Any feasible set M for a LOP in standard form is convex and closed. If M is also
nonempty and bounded, f attains its maximum on M.

3.4. Extreme Points and Basic Solutions
Let M be a convex set. A point x⃗0 ∈ M is called an extreme point of M if x⃗0 cannot be
expressed as a convex linear combination αx⃗1 + (1− α) x⃗2 with α ∈ [0, 1] of two points
x⃗1, x⃗2 ∈ M with x⃗1 ̸= x⃗0 and x⃗2 ̸= x⃗0.

If the set M is nonempty, then it has at most finitely many and at least one extreme
point. If M is in addition bounded, then M is the convex hull of its extreme points
x⃗1, . . . , x⃗k, i. e. any point x⃗ ∈ M can be expressed as convex linear combination of the
extreme points.

If M is nonempty and bounded, then there is an extreme point x⃗∗ ∈ M such that
f (⃗x∗) ≥ f (⃗x) ∀⃗x ∈ M. Thus, one of the extreme points is the optimal solution to the
LOP.

3. Optimization Methods 27

If M is nonempty and unbounded, then there need not be an optimal solution. However,
if there is one, then the following theorem holds:

If M is nonempty and there exists a K such that f (⃗x) ≤ K for all x⃗ ∈ M, then there is
an extreme point x⃗∗ ∈ M such that f (⃗x∗) ≥ f (⃗x) for all x⃗ ∈ M.

Let A ∈ Rm×n be a matrix with column vectors a⃗1, . . . , a⃗n, M =
{

x⃗ ∈ Rn
∣∣∣ (Ax⃗ = b⃗

)
∧ (⃗x ≥ o⃗)

}
and S (⃗x) = {a⃗i | (i ∈ {1, . . . , n}) ∧ (xi ̸= 0)} for x⃗ ∈ M. Then x⃗ is called a basic solution
if S (⃗x) is linear independent.

x⃗ ∈ M is an extreme point of M iff x⃗ is a basic solution.

3.5. The Simplex Algorithm
3.5.1. Overview
Consider the LOP in standard form (L) as follows:

max f (⃗x) = c⃗⊤x⃗ (3.13)
subject to

Ax⃗ = b⃗ (3.14)
x⃗ ≥ o⃗ (3.15)
A ∈ Rm×n (3.16)
b⃗ ≥ o⃗ (3.17)

rk (A) = m (3.18)

A few facts are already known:

• M has at least one extreme point

• Any extreme point of M is a basic solution of (L) and vice versa

• (L) has at most
(

n
m

)
basic solutions

• If there is an optimal solution of (L), then there is an optimal solution of (L) that
is a basic solution.

• If M is nonempty and bounded, then there is an optimal solution of (L).

Thus, if M is nonempty and bounded, there is a finite algorithm that finds an optimal
(basic) solution of (L).

One such algorithm is the Simplex Algorithm. It consists of two parts, called Phase
1 and Phase 2. The input of Phase 2 is a feasible basic solution. The algorithm stops
when either an optimal basic solution has been found or if it has been detected that the
objective function is unbounded on M. In the latter case, there is no optimal solution of
(L).

3. Optimization Methods 28

If no feasible basic solution, Phase 1 must be executed, which applies Phase 2 to an
auxiliary LOP. Phase 1 stops when a feasible basic solution of (L) Has been found or if
it has been detected that M is empty.

3.5.2. Phase 2
Let x⃗ be a feasible basic solution of (L). Letz T (⃗x) ⊆ {a⃗1, . . . , a⃗n} be a maximal linear
independent set of column vectors of A such that xk ̸= 0 =⇒ a⃗k ∈ T (⃗x), i. e. T gives
the set of columns of A where the basic solution’s value is not 0. It is called a basis of
the linear subspace generated by all column vectors of A. Thus, each column vector a⃗j
can be represented as a linear combination of the elements of T (⃗x):

a⃗j =
∑
k∈B

tk,ja⃗k (3.19)

Let B = {k ∈ {1, . . . , n} | a⃗k ∈ T (⃗x)} and N = {1, . . . , n}\B, i. e. B is the set of column
indices where there is corresponding a⃗k to the basic solution and N is the remainder of
column indices.

If j ∈ B, then tj,j = 1 and tk,j = 0 if k ̸= j. For j ∈ N let uj =
∑

k∈B tk,jck and dj = uj−cj.
These values can be used to transform f (⃗x) into f (⃗y) for an arbitrary feasible solution y⃗.

Three cases can now be distinguished:
• All offset factors di for i ∈ N are positive. Then f (⃗y) ≤ f (⃗x), i. e. the basic solution is

better than or equal to f (⃗y) for all feasible solutions, i. e. the feasible basic solution
x⃗ is also optimal. The algorithm stops.

• For some j ∈ N, all dj < 0 and tk,j ≤ 0 for all k ∈ B. Then the objective function f
is unbounded from above on M, i. e. the objective function can get arbitrarily high.
The algorithm stops.

• For some j ∈ N with dj < 0 there is an index l ∈ B such that tl,j > 0. Then a new
feasible basic solution z⃗ is calculated and the algorithm starts over.

Special care is neeeded to avoid “cycling”; this is done by applying Bland’s rule,
i. e. always take the lowest such j and the lowest such basis index to find a new z⃗.

3.5.3. Phase 1
If the original LOP is given in standard form (L), and no feasible basic solution is known,
an auxiliary LOP can be used to find one:

min g (⃗x, y⃗) =
m∑

i=1

yi (3.20)

subject to
Ax⃗ + y⃗ = b⃗ (3.21)

x⃗ ≥ o⃗ (3.22)
y⃗ ≥ o⃗ (3.23)

3. Optimization Methods 29

A feasible basic solution for the auxiliary problem is y⃗ = b⃗, x⃗ = o⃗. Thus, the feasible
set of the auxiliary LOP is nonempty.

The auxiliary LOP has an optimal solution (⃗y∗, x⃗∗) and the original LOP has a feasible
solution iff y⃗∗ = o⃗. Thus, the objective is to find an optimal solution with y⃗ = o⃗.

An optimal solution can be found by applying Phase 2 to the auxiliary LOP. A basic
feasible solution for the auxiliary LOP is y⃗ = b⃗, x⃗ = o⃗.

3.5.4. Simplex Tableaus
The plain algorithm description can be applied to a tabular view of the system of equa-
tions. The system of linear equations representing Ax⃗ = b⃗ can be transformed by the
Gauss-Jordan transformation into equivalent systems of equations. The following ope-
rations can be performed:

• Switch two equations (rows)

• Multiply one equation (row) with a nonzero factor

• Add a multiple of an equation (row) to another equation (row)

The resulting system of equations has exactly the same solutions as the original one.
With these operations, the system of linear equations Ax⃗ = b⃗ can be transformed into

an equivalent system of linear equations Ax⃗ = b⃗ such that the first m columns form an
m × m identity matrix I.

In simplex tableaus, we extend the system of equations Âx⃗ =
⃗̂b by adding another row(⃗

ĉ⊤
∣∣∣z) with ẑ = ⃗̂c⊤x⃗ being the transformed objective function value and

ĉi =

{
0 i ∈ B
ci −

∑
k∈B cktk,j i ∈ N

(3.24)

ẑ = z −
∑
k∈B

ckbk (3.25)

This allows us to produce new basic solutions as follows:

• Choose j ∈ N such that dj < 0.

• Choose l ∈ B such that tl,j > 0 and xl
tl,j

is minimal.

• If multiple such j and l exist, apply Bland’s rule.

• Multiply the lth equation by 1
tl,j

and then, add the resulting lth equation multiplied
by −tk,j to the kth equation for k ∈ {1, . . . ,m} with k ̸= l.

• Add the lth equation multiplied by −ĉj = −dj to the equation c⃗⊤x⃗ = z, giving
⃗̂c⊤x⃗ = ẑ.

This translates into the following steps:

3. Optimization Methods 30

• Find the column j with the highest cj (= pivot column).

• Divide the values of the last column by the corresponding values from the pivot
column. Find the row where the result is the lowest (= pivot row).

• The intersection between the pivot column and pivot row is the pivot element.

• Use Gauss-Jordan transformations to bring all cells of the pivot column except the
pivot element and the last row to 0. While doing so, make sure that b⃗ remains
positive!

• Repeat until:
– All cj are ≤ 0. An optimal solution has been found. Stop.
– For some j with cj > 0 all cells aij above it are aij ≤ 0. Then the solution is

unbounded.

3.5.5. The Complexity of the Simplex Algorithm
While there are examples where the Simplex Algorithm starting with a specified feasible
basic solution will pass through all vertices, and the number of vertices is exponential
in the number n of variables. Still, in practice the Simplex Algorithm is very efficient in
approach. In many relevant cases, its running time is proportional to m + n.

Polynomail time algorithms for LOPs also exist (Khachian, Karmarkar). Furthermore,
there are also polynomial time variations of the Simplex Algorithm for special cases like
single-commodity network flow problems.

3.6. Duality
To every primal problem (i. e. any problem)

max c⃗⊤x⃗ s. t. Ax⃗ ≤ b⃗, x⃗ ≥ o⃗ (3.26)
there is a dual problem

min b⃗⊤y⃗ s. t. A⊤y⃗ ≥ c⃗, y⃗ ≥ o⃗. (3.27)

Thus, in the dual problem, the number of variables and constraints are switched with
each other. If the primal problem had 2 variables and 3 constraints, the dual problem has
3 variables and 2 constraints. The optimal solution for both problems is the same and
any feasible solution is a bound for the optimal solution. If the primal optimal solution
is unbounded, then the dual problem has no solution. Vice versa, if the primal problem
has no solution, the dual problem’s optimal solution is unbounded.

If there are feasible solutions of the primal problem and its objective function c⃗⊤x⃗
is bounded from above, then both the primal and dual problem have optimal feasible
solutions x⃗∗ and y⃗∗ and

c⃗⊤x⃗∗ = (⃗y∗)⊤ b⃗. (3.28)

3. Optimization Methods 31

If there are feasible solutions of the dual problem and its objective function y⃗⊤b⃗ is
bounded from below, both the primal and dual problem have optimal feasible solutions
x⃗∗ and y⃗∗ and

c⃗⊤x⃗∗ = (⃗y∗)⊤ b⃗. (3.29)

The primal problem can be transformed into the dual problem as shown in Tabelle 3.1.

Tabelle 3.1.: Transformation between the primal and dual LOP
Primal LOP Dual LOP

Variables x1, . . . , xn y1, . . . , ym
Matrix A A⊤

Right-hand side b⃗ c⃗
Objective function max c⃗⊤x⃗ min b⃗⊤y⃗
Constraints ith constraint has ≤ yi ≥ 0

ith constraint has ≥ yi ≤ 0
ith constraint has = yi ∈ R

xj ≥ 0 jth constraint has ≥
xj ≤ 0 jth constraint has ≤
xj ∈ R jth constraint has =

3.7. Branch and Bound
Consider a (hard to solve) optimization problem

min f (x)s. t. x ∈ M. (3.30)
Associate a relaxed optimization problem

min g (x)s. t. x ∈ R (3.31)

such that

• M ⊆ R,

• if x ∈ R, then g (x) = f (x), and

• The relaxed problem can be solved efficiently.

Then, if y∗ is an optimal solution for the relaxed problem, then f (x) ≥ f (y∗) for all
x ∈ M, i. e. the optimal solution of the relaxed problem is an upper bound for the optimal
solution of the hard problem. If y∗ ∈ M, then y∗ is also an optimal solution to the hard
problem.

The idea of branch and bound is now to partition the input space M into M1 and M2

and solve the optimization problem for both M1 and M2 individually (possibly splitting

3. Optimization Methods 32

these problems up again), compare both solution and choose the better one. This solution
then is the optmial solution for x ∈ M.

When solving for some input space Mi, first solve the relaxed problem g. If it has an
optimal solution y∗ ∈ Mi, then immediately return this solution as solution for the hard
problem. Otherwise, split up Mi into two partitions as describe above and solve those.

If the optimal solution for g in each step turns out ot be worse than the currently
known best solution, don’t continue on this path at all (as the solution can only get
worse than the currently known best solution).

The branch and bound method recursively splits up the input space, and obtains
optimal solutions for each part of the partition, then chooses the best one. To reduce
calculation effort and eventually obtain a solution, the relaxed problem is solved in
each step and check for whether it yields a solution that matches one input from the
current input space. Furthermore, if at some point it is clear that the solution for the
relaxed problem is worse than the best known solution, the solution for the hard problem
can only get worse down this recursion path, so calculation stops there. Eventually,
all branches have been either checked or discarded and the optimal solution has been
obtained. However, in the worst case, the whole input space has been searched, leading
to extremely large run times.

3.7.1. Branch and Bound for Mixed Integer Problems
Consider the MIP

min f (x) = cx (3.32)
s. t.

Ax = b (3.33)
x ≥ 0 (3.34)

And xi is integer for all j ∈ I where x = (x1, . . . , xn), b ≥ 0, A ∈ Rm×n has rank m ≤ n
and I ⊆ {1, . . . , n}.

Thus, some subset of variables xi must be integer.
A relaxed problem to this hard problem can be chosen by simply removing the integer

constraint (i. e. the xi that must be integer in the original problem may now be real).
This is called LP-relaxation and results in the following LOP:

min f (x) = cx (3.35)
s. t.

Ax = b (3.36)
x ≥ 0 (3.37)

where x = (x1, . . . , xn) and b ≥ 0, A ∈ Rm×n has rank m ≤ n.
The relaxed problem can be solved with the Simplex Algorithm, while the MIP must

be solved with branch and bound. During the branch step, the input space is split up

3. Optimization Methods 33

by choosing some integer variable yk and its optimal value y∗k for the relaxed problem.
The two sets of possible input values are now:

B1 = {y ∈ B | yk ≤ ⌊y∗k⌋} (3.38)
B2 = {y ∈ B | yk ≥ ⌊y∗k⌋} (3.39)

if B is the input space from the “parent” operation.

3.7.2. Cutting planes for MIP
Given a MIP and its LP-relaxation as before, the idea is to find a valid cut dx ≤ q such
that

{x |Ax = b, x ≥ 0, dx ≤ q} ̸= R and (3.40)
{x |Ax = b, x ≥ 0, xj is integer for all j ∈ I, dx ≤ q} = M (3.41)

Such a cut reduces M by the optimal solution of the LP-relaxation. Thus, running the
solver for the LP-relaxation again now gives a different optimal solution, which hopefully
is closer to the optimal integer solution. This is process is repeated until the optimal
solution to the LP-relaxation is integer, in which case it is also an optimal solution to
the MIP.

4. Network Design Problems

4.1. Simple Design Problem
• Indices:

– d = 1, 2, . . . ,D… demands
– p = 1, 2, . . . ,Pd… candidate aths for flows realizing demand d
– e = 1, 2, . . . ,E… links

• Constants:
– δedp… if link e belongs to path p realizing demand d
– hd volume of demand d
– ξe unit (marginal) cost of link e
– xdp flow allocated to path p of demand d
– ye capacity of link e

• Objective: min F =
∑

e ξeye (bandwidth cost)

• Constraints:
Pd∑

p=1

xdp = hd, ∀d ∈ {1, . . . ,D} (demand constraints) (4.1)

D∑
d=1

Pd∑
p=1

δedpxdp ≤ ye ∀e ∈ {1, . . . ,E} (capacity constraints) (4.2)

Solutions to this optimization problem will have ye equal to the load on the links, as
otherwise the costs could be lowered (and thus the solution wouldn’t be optimal). ye
can be substituted in the cost function with ye =

∑
d
∑

p δedpxdp and ζdp =
∑

e ξeδedp
denoting the cost of path p for demand d:

F =
D∑

d=1

Pd∑
p=1

ζdpxdp (4.3)

This leads to the SDP-Decoupled Link-Path formulation (SDP/DLPF):

• Variables: xdp flow variable allocated to path p of demand d

4. Network Design Problems 35

• Objective: min F =
∑D

d=1

∑Pd
p=1 ζdpxdp

• Constraints: ∀d ∈ {1, . . . ,D} :
∑Pd

p=1 xdp = hd

This problem formulation has fewer variables! Due to the linear structure of F, this
is actually a set of decoupled optimization problems, with an optimal solution to these
problems allocating all demand on the shortest path. If there are multiple shortest paths,
the demand can be arbitrarily split among these paths.

4.2. Capacitated Problems
4.2.1. Pure Allocation Problem

• Constants:
– δedp as before
– hd as before
– ce… capacity of link e

• Variables:
– xdp as before

• Constraints:
Pd∑

p=1

xdp = hd ∀d ∈ {1, . . . ,D} (4.4)

D∑
d=1

Pd∑
p=1

δedpxdp ≤ ce ∀e ∈ {1, . . . ,E} (4.5)

This problem has no objective function to optimize, so in this basic form the goal is just
to find any solution that satisfies the constraints.

Another auxiliary variable can be introduced to define an objective. This yields the
PAP Modified Link Path Formulation:

• Variables:
– xdp as before
– z… auxiliary continuous variable (of unrestricted sign)

• Objective:

min z (4.6)

4. Network Design Problems 36

• Constraints:
Pd∑

p=1

xdp = hd ∀d ∈ {1, . . . ,D} (4.7)

D∑
d=1

Pd∑
p=1

δedpxdp ≤ z + ce ∀e ∈ {1, . . . ,E} (4.8)

This problem always has a solution and if z∗ ≤ 0, then x∗dp represent a solution to the
original PAP. If PAP is feasible, then a solution x with at most D + E non-zero flows
exists.

In many cases, some objective function to find the best solution shall be found. The
above problem maximizes the minimum unused capacity. However, it is also possible to
maximize the total unused capacity after flow allocation:

max F =
E∑

e=1

re

ce −
D∑

d=1

Pd∑
p=1

δedpxdp

 (4.9)

=

E∑
e=1

re
(

ce − ye

)
(4.10)

4.2.2. Bounded Link Capacities
A variation of a mixed dimensioning/capacitated problem, where link capacities ye shall
be dimensioned with upper bounds ce can also be considered:

• Objective:

min F =
E∑

e=1

ξeye (4.11)

• Constraints:
Pd∑

p=1

xdp = hd ∀d ∈ {1, . . . ,D} (4.12)

D∑
d=1

Pd∑
p=1

δedpxdp ≤ ye ∀e ∈ {1, . . . ,E} (4.13)

ye ≤ ce ∀e ∈ {1, . . . ,E} (4.14)

4.2.3. Path Diversity (PD)
Sometimes, flows shall be allocated in a way that no single path flow xdp carries more
than a fraction of the demand (expressed by nd… the number of different paths among
which hd is to be split).

4. Network Design Problems 37

• Variables:
– xdp as before

• Constraints:
Pd∑

p=1

xdp = hd ∀d ∈ {1, . . . ,D} (4.15)

D∑
d=1

Pd∑
p=1

δedpxdp ≤ ce ∀e ∈ {1, . . . ,E} (4.16)

xdp ≤ hd
nd

∀d ∈ {1, . . . ,D} , p ∈ {1, . . . ,Pd} (4.17)

If nd is an integer, it will force the demand d to be split amon onto at least nd different
paths. If all Pd candidate paths for a demand d are link disjoint, this can guarantee that
a single link failure leads to demand d loosing at most 100%

nd
of its volume.

4.2.4. Generalized Diversity (GD)
The diversity constraint from PD can also be formulated in a stricter way, allowing to
pass arbitrary candidate path lists1:

• Constraints:
Pd∑

p=1

xdp = hd ∀d ∈ {1, . . . ,D} (4.18)

D∑
d=1

Pd∑
p=1

δedpxdp ≤ ce ∀e ∈ {1, . . . ,E} (4.19)

Pd∑
p=1

δedpxdp ≤ hd
nd

∀d ∈ {1, . . . ,D} , e ∈ {1, . . . ,E} (4.20)

The modified constraint ensures that no link e of path Pdp carries more than 100%
nd

of
demand d. As multiple candidate paths for one demand may use one specific link, the
sum over all candidate paths must be calculated. A major drawback of this problem is
the high number of constraints.

The shortest path allocation rule from the original problem can be used in a modified
version:

• First, look up the shortest path for a demand an allocate hd
nd

to it.

• Then, allocate the next fraction hd
nd

the next shortest path and so on.
1Note the inclusion of δedp in the last constraint set here.

4. Network Design Problems 38

4.2.5. Lower Bounded Flows
Sometimes, the flow over a path shall be restricted from below to avoid having a flow
to be partitioned among too many paths. This is somehow opposite to path diversity.
It requires modeling a lower bound to non-zero flows. thus, new constants and binary
variables need to be introduced, leading to the followig problem:

• Constraints:
Pd∑

p=1

xdp = hd ∀d ∈ {1, . . . ,D} (4.21)

D∑
d=1

Pd∑
p=1

δedpxdp ≤ ce ∀e ∈ {1, . . . ,E} (4.22)

xdp ≤ hdudp ∀d ∈ {1, . . . ,D} , p ∈ {1, . . . ,Pd} (4.23)
bdudp ≤ xdp ∀d ∈ {1, . . . ,D} , p ∈ {1, . . . ,Pd} (4.24)

The binary variables udp make this problem difficult to solve, as most methods are not
significantly different from trying out all combinations.

4.2.6. Limited Demand Split
The idea is to limit among how many non-zero path flows a demand d can be split, repre-
sented by the constant kd. Dependig on kd, this can result in a number of optimization
problems and always introduces binary variables udp.

Single-Path-Allocation (SPA, kd = 1):

• Constraints:

xdp = hdudp ∀d ∈ {1, . . . ,D} , p ∈ {1, . . . ,Pd} (4.25)
Pd∑

p=1

udp = 1 ∀d ∈ {1, . . . ,D} (4.26)

D∑
d=1

Pd∑
p=1

δedpxdp ≤ ce ∀e ∈ {1, . . . ,E} (4.27)

The second constraint enforces that for each demand exactly one binary variable udp = 1
and all others are = 0. The first constraint enforces that xdp = 0 whenever udp = 0,
i. e. non-zero flows can only exists for paths and demands where udp = 1.

This problem is known to be NP-complete.

Integral Flow Pure Allocation Problem: For a set of demands find an integral solution
(all xdp are integers) so that capacity constraints of all edges are not exceeded.

The SPA formulation can be simplified by eliminating flow variables xdp:

4. Network Design Problems 39

• Variables:
– udp… binary variable, flow allocated to path p of demand d

• Constraints:
Pd∑

p=1

udp = 1 ∀d ∈ {1, . . . ,D} (4.28)

D∑
d=1

hd

Pd∑
p=1

δedpudp ≤ ce ∀e ∈ {1, . . . ,E} (4.29)

By using binary variables, the formulation that a demand d must be split equally
among kd candidate paths is also possible:

• Additional constants:
– kd… predetermined number of paths for demand d

• Constraints:
Pd∑

p=1

udp = kd ∀d ∈ {1, . . . ,D} (4.30)

D∑
d=1

 Pd∑
p=1

δedpudp

 hd
kd

≤ ce e ∈ {1, . . . ,E} (4.31)

Arbitrary Split Among k Paths:

• Constraints:
Pd∑

p=1

xdp = hd d ∈ {1, . . . ,D} (4.32)

Pd∑
p=1

udp = kd d ∈ {1, . . . ,D} (4.33)

xdp ≤ udphd d ∈ {1, . . . ,D} , p ∈ {1, . . . ,Pd} (4.34)
D∑

d=1

Pd∑
p=1

δedpxdp ≤ ce e ∈ {1, . . . ,E} (4.35)

4.3. Modular Flow Allocation
In transport networks, demand volumes are usually given in terms of modular units, as
the underlying technology normally only allows certain discrete network speeds (e. g.SFP
modules, nBASE-T standards). In such cases, demands d can be modeled as a number
Hd of demand modules, each with capacity Ld (thus hd = Ld · Hd).

4. Network Design Problems 40

• Additional constants:
– Ld… demand module for demand d
– Hd… volume of demand d expressed as the number of demand modules

• Constraints:

xdp = Ldudp ∀d ∈ {1, . . . ,D} , p ∈ {1, . . . ,Pd} (4.36)
Pd∑

p=1

xdp = hd ∀d ∈ {1, . . .D} (4.37)

D∑
d=1

Pd∑
p=1

δedpxdp ≤ ce ∀e ∈ {1, . . . ,E} (4.38)

As xdp = Ld · udp, the variables xdp can be eliminated to simplify the formulation:

• Additional constants:
– Ld… demand module for demand d
– Hd… volume of demand d expressed as the number of demand modules

• Constraints:
Pd∑

p=1

udp = Hd ∀d ∈ {1, . . . ,D} (4.39)

D∑
d=1

Ld

Pd∑
p=1

δedpudp ≤ ce ∀e ∈ {1, . . . ,E} (4.40)

4.4. Non-Linear Link Dimenioning, Cost and Delay Functions
So far, the assumption was that link capacities are equal to the link loads for uncapaci-
tated problems. However, typically the link cost function is built upon the notion of the
link dimensioning function Fe

(
ye

)
which determines the relationship between the link

load ye and the minimal required link capacity ye.
As the link cost was computed as the capacity times a cost coefficient ξe, the link cost

was always considered linear. The following problems extend this by considering also
module links, links with convex cost and links with concave cost.

4.4.1. Modular Links
In practice, links are often of modular size. Assume that the size of one link capacity
module is M. The variable ye denotes the number of link capacity modules. The link
dimensioning function is:

Fe
(

ye

)
= kξe with (k − 1)M ≤ ye ≤ kM (4.41)

4. Network Design Problems 41

This gives the optimization problem for modular links (ML):

• Additional constants:
– ξe… cost of one capacity module on link e
– M… unique size of the link capacity module

• Objective:

min F =
E∑

e=1

ξeye (4.42)

• Constraints:
Pd∑

p=1

xdp = hd ∀d ∈ {1, . . . ,D} (4.43)

D∑
d=1

Pd∑
p=1

δedpxdp ≤ Mye ∀e ∈ {1, . . . ,E} (4.44)

The dimensioning problem with modular links ML is NP-complete.
This problem could be solved heuristically by assuming a linear approximation of the

link dimensioning function Fe, solving the respective linear programming problem and
then rounding up the obtained link capacities. This, however, can lead to solutions that
are far from optimal.

ML can also be generalized to cover multiple module sizes M1, . . . ,MK where K Is
the number of module types and variable yek denotes the number of modules of size Mk
installed on link e: Links With Multiple Modular Sizes (LMMS) :

• Additional constants:
– ξek… cost of one capacity module of type k on link e
– Mk… size of the link capacity module of type k

• Objective:

min F =
E∑

e=1

K∑
k=1

ξekyek (4.45)

• Constraints:
Pd∑

p=1

xdp = hd ∀d ∈ {1, . . . ,D} (4.46)

D∑
d=1

Pd∑
p=1

δedpxdp ≤
K∑

k=1

Mkyek ∀e ∈ {1, . . . ,E} (4.47)

4. Network Design Problems 42

Modeling K different module sizes increases the number of required variables by a factor
of K, as one set of variables is needed for each modular unit type. Yet another way of
introducing module cost function with different modules is the incremental characteriza-
tion:

• K denotes the number of steps.

• The incremental sizes of the link capacity module of type k are modeled with
m1,m2, . . . ,mk (if the load on a link passes one of these values, the respective cost
function for this link “jumps”).

• The cost of each incremental module mk on link e is ξek.

• Binary variables uek are used to indicate whether the incremental module of type
k is installed on link e or not.

This gives the problem Links With Incremental Modules (LIM):

• Additional constants:
– ξek… cost of one capacity module of type k on link e
– mk… incremental size of the link capacity module of type k

• Variables:
– xdp… flow allocated to path p of demand d
– uek… binary variable indicating if module of type k is installed on link e

• Objective:

min F =

E∑
e=1

K∑
k=1

ξekuek (4.48)

• Constraints:
Pd∑

p=1

xdp = hd ∀d ∈ {1, . . . ,D} (4.49)

D∑
d=1

Pd∑
p=1

δedpxdp ≤
K∑

k=1

mkuek ∀e ∈ {1, . . . ,E} (4.50)

ue1 ≥ ue2 ≥ . . . ≥ ueK ∀e ∈ {1, . . . ,E} (4.51)

4.4.2. Convex Cost and Delay Functions
A real-valued function f defined on the interval [0,∞) is called convex, if for any two
points z1, z2 ∈ [0,∞) and any α ∈ [0, 1] we have:

αf (z1) + (1− α) f (z2) ≥ f (αz1 + (1− α) z1) (4.52)

4. Network Design Problems 43

Pictorically, a function is called convex if the function lies below or on the straight line
segment connecting two points, for any two points in the interval.

Allocation With Convex Cost Function (CCF):

• Additional constants:
– Fe (·)… convex cost function of link e

• Variables:
– ye… load of link e

• Objective:

min F =

E∑
e=1

Fe
(

ye

)
(4.53)

• Constraints:
Pd∑

p=1

xdp = hd ∀d ∈ {1, . . . ,D} (4.54)

D∑
d=1

Pd∑
p=1

δedpxdp = ye ∀e ∈ {1, . . . ,E} (4.55)

ye ≤ ce ∀e ∈ {1, . . . ,E} (4.56)

Convex function can be used to convert capacitated flow allocation problems to un-
capacitated ones by using penalty functions. This requires that the penalty function is
convex and incurs a high cost if the link capacity is violated. The uncapacitated problem
can then be obtained by omitting the constraints

ye ≤ ce ∀e ∈ {1, . . . ,E} (4.57)

To solve convex optimization problems with the techniques learned so far, linear ap-
proximations of the convex functions must be made to obtain a “corresponding” linear
problem. In the general case, the convex function is approximated with a series gk (z) of
linear functions:

• g (z) = gk (z) = akz + bk

• sk−1 ≤ z ≤ sk, k ∈ {1, . . . ,K}

• s1 = 0, sk = ∞

As linear programming problems have their optimum solutions in the edges of the poly-
tope describing the area of valid solutions, the solution computed will be a point where
the linear approximation is equal to the actual convex function. Thus, an optimal so-
lution to the approximative problem is also a valid solution to the original problem.

4. Network Design Problems 44

However, it is not necessarily an optimal solution! Different approximations can lead to
different solutions.

Convex Penalty Function with Piecewise Linear Approximation (CPF/PLA):

• Additional incdices and constants:
– k = 1, . . . ,Ke… consecutive pieces of the linear approximation of Fe (·)
– aek, bek… coefficients of the linear pieces of the linear approximation of Fe (·)

• Variables:
– re… continuous variable approximating Fe

(
ye

)
• Objective:

min F =

E∑
e=1

re (4.58)

• Constraints:
Pd∑

p=1

xdp = hd ∀d ∈ {1, . . . ,D} (4.59)

D∑
d=1

Pd∑
p=1

δedpxdp = ye ∀e ∈ {1, . . . ,E} (4.60)

re ≥ aekye + bek ∀e ∈ {1, . . . ,E} , k ∈ {1, . . . ,Ke} (4.61)

Thus, convex mathematical programming problems can be transformed into linear pro-
gramming problems. Also, in many applications, it is not important to know the exact
equations of the linear pieces of the approximation, but only the slopes aek and points
sk where they change matter.

min a1z1 + a2z2 + . . .+ aKzK (4.62)
subject to

y = z1 + z2 + . . .+ zK (4.63)
0 ≤ z1 ≤ s1 − s0 (4.64)
0 ≤ z2 ≤ s2 − s1 (4.65)
... (4.66)

0 ≤ zK ≤ sK − sK−1 (4.67)

This works, because due to convexity we have a1 < a2 < . . . < aK.
Problems with a linear cost function, but convex constraints are also possible, e. g. mi-

nimizing capacity cost for a fixed routing under the constraint that a given average
acceptable delay D̂ has to be met. This can be solved by various methods:

4. Network Design Problems 45

• Karush-Kuhn-Tucker conditions

• Classical Lagrangian multiplier method

• Piecewise linear approximation as described before

Capacity Design With Fixed Routing and Delay Constraint:

• Constants:
– ye… load on link e induced by fixed routing

– D̂… acceptable delay
– H… total traffic volume H =

∑
d Hd

• Variables:
– ye… capacity of link e

• Objective:

min F =
E∑
e

ξeye (4.68)

• Constraints:

ye ≥ ye ∀e ∈ {1, . . . ,E} (4.69)

1

H

E∑
e

ye
ye − ye

≤ D̂ (4.70)

4.4.3. Concave Link Dimensioning Functions
A real-valued function f defined on the interval [0,∞) is called concave, if for any two
points z1, z2 ∈ [0,∞) and any α ∈ [0, 1] we have:

αf (z1) + (1− α) f (z2) ≤ f (αz1 + (1− α) z2) (4.71)

Pictorically, a function is called concave if the function lies above or on the straight
line segment connecting two points, for any two points in the interval.

In networks, concave functions often appear to describe link dimensioning functions,
as growth in link costs often adheres to the following relation:

f (z1)
z1

≥ f (z2)
z2

for z1 < z2 (4.72)

Concave Link Dimensioning Functions (CDF):

• Additional constants:

4. Network Design Problems 46

– Fe (·)… non-decreasing concave dimensioning function of link e

• Variables:
– ye… load of link e

• Objective:

min F =
E∑
e

ξeFe
(

ye

)
(4.73)

• Constraints:
Pd∑

p=1

xdp = hd ∀d ∈ {1, . . . ,D} (4.74)

D∑
d=1

Pd∑
p

δedpxdp = ye ∀e ∈ {1, . . . ,E} (4.75)

Optimal solutions to these kinds of problems are non-bifurcated as allocating one big
link is cheaper than allocating two small links. As these problems require minimizing a
concave objective function subject to linear constraints, they in general can have nume-
rous local minima on the extreme points of the feasible region defined by the constraints.
Thus, finding the global minimum can be a very difficult task.

Piecewise linear approximation as was done for convex functions does not lead to a
linear programming problem for concave functions. However, approximation leads to a
mixed-integer programming program. In general:

g (z) := gk (z) = akz + bk, sk−1 ≤ z < sk, k ∈ {1, . . . ,K} (4.76)

To avoid multiplying two variables (which is forbidden in mixed integer programming
problems), additional variables yk must be introduced and limited by additional cons-
traints:

min
K∑

k=1

(akyk + bkuk) (4.77)

subject to
K∑
k

yk = y (4.78)

yk ≤ ∆uk ∀k ∈ {1, . . . ,K} (4.79)
yk nonnegative continuous (4.80)
uk binary (4.81)
∆ number larger than any potential value y (4.82)

4. Network Design Problems 47

These constraints force that exactly one value (the right one) yk will be non-zero and
equal to y in the optimal solution.

Concave Dimensioning Functions with Piecewise Mixed-Integer Approximation (CDF/
PMIA):

• Additional Indices and Constants:
– k = 1, . . . ,Ke… consecutive pieces of the linear approximation
– aek, bek… coefficients of the linear pieces of the approximation

• Variables:
– yek, uek continuous/binary variables for link e

• Objective:

min F =
∑

e

∑
k

(aekyek + bekuek) (4.83)

• Constraints:
Pd∑

p=1

xdp = hd ∀d ∈ {1, . . . ,D} (4.84)

D∑
d=1

Pd∑
p=1

δedpxdp = ye ∀e ∈ {1, . . . ,E} (4.85)

K∑
k=1

yek = ye ∀e ∈ {1, . . . ,E} (4.86)

K∑
k=1

uek = 1 ∀e ∈ {1, . . . ,E} (4.87)

yek ≤ ∆uek ∀e ∈ {1, . . . ,E} , k ∈ {1, . . . ,K} (4.88)

Assuming that the piecewise linear approximation involves the same number K of
pieces for every link, the above problem contains:

• E · K additional continuous variables yek

• E · K additional binary variables uek

• E · (K + 2) additional constraints

This indicates that the problem is difficult to solve. Ther are no algorithms known that
are significantly better than the full search in the space of binary variables.

Similar to convex functions, sometimes just looking at slopes and the points where
the slopes change might be enough instead of doing a full approximation.

4. Network Design Problems 48

4.5. Budget Constraints
A possible alternative optimization goal to minimizing cost is to stay within a given
budget constraint and choose a different optimization goal, e. g. when optimizing for
throughput, while staying in budget constraints:

Budget Constraint (BC):

• Additional Constants:
– B… given budget
– hd… reference volume of demand d

• Variables:
– ye… capacity of link e
– r… proportion of the realized demand volumes

• Objective:

max r (4.89)

• Constraints:
Pd∑

p=1

xdp ≥ rhd ∀d ∈ {1, . . . ,D}
D∑

d=1

Pd∑
p=1

δedpxdp ≤ ye∀e ∈ {1, . . . ,E}
E∑

e=1

ξeye ≤ B

(4.90)

4.6. Incremental Network Design Problems
Often networks are not designed from scratch, but have to be extended with additional
resources. In such cases, there are already existing link capacities ce and the task is to
add additional capacities ye to account for an increase in the demand volume.

For this, add to the existing problem capacity constraints for all links which are already
present. The cost of such a problem is generally higher than the optimal solution of a
pure network design problem.

Simple Extension Problem (SEP):

• Additional Constants:
– ce… existing capacity of link e
– ξe… unit cost of link e

• Variables:
– ye… extra capacity of link e on top of ce

4. Network Design Problems 49

• Objective:

min F =

E∑
e=1

ξeye (4.91)

• Constraints:
Pd∑

p=1

xdp = hd ∀d ∈ {1, . . . ,D} (4.92)

D∑
d=1

Pd∑
p=1

δedpxdp ≤ ye + ce ∀e ∈ {1, . . . ,E} (4.93)

(4.94)

4.7. Representing Nodes
So far, only link capacities were considered, but node capacities can be limited or imply
costs as well. These can be modeled by splitting up each node into an ingress node, an
egress node and a connecting internal link. All ingress links are connected to the ingress
node and all egress links are connected to the egress node. The link capacity of the
internal link can then be used to model the capacity of the node from the original graph.

This can be used both for limiting capacity constraints on nodes or node failures (by
failing its internal link).

5. Network Resilience

5.1. Introduction
Network resilience denote the property of a network to sustain the ability to communi-
cate even if parts (nodes, links) of the network fail. Quantification of random failures
often computes the probability of certain conditions, e. g. partitioning of a network,
etc. Quantification of failures due to deliberate attacks often computes the worst case
damage, e. g. smallest number of attacked/failed links or nodes so that the remaining
network is partitioned, etc. Additionally, the smallest number of additional links that
need to be added in order to increase the resilience of a network against random failures
or deliberate attacks can be of interest.

Definitions from Graph Theory:

• Two paths p1 and p2 from x to y in G are edge independent, if they have no link
in common.

• Two paths p1 and p2 from x to y in G are node independent, if they only have
nodes x and y in commong.

• If there is at least one path linking every pair of actors in the graph then the graph
is called connected.

• If there are k-edge-independent paths connecting every pair, the graph is k-edge-
connected.

• If there are k node-independent paths connecting every pair, the graph is k-node-
connected.

• The biggest number k for which G is k-edge-connected is called the edge-connectivity
of G.

• The biggest number k for which G is k-node-connected is called the node-connectivity
of G. Graphs that are 2-node-connected are also called biconnected.

• In any connected component, the path(s) linking two non-adjacent nodes must
pass through a subset of other nodes, which if removed, would disconnect them.

– For two nodes s and t the set T ⊆ V {s, t} is called an s-t-cutting-node-set if
every path connecting s and t passes through at least one node of T, that is
there is no path from s to t in G \ T.

5. Network Resilience 51

– A set T is called a cutting-node-set if T is an s-t-cutting-node-set for two
nodes s and t.

– For two nodes s and t the set F ⊆ E is called an s-t-cutting-edge-set if every
path connecting s and t traverses at least one edge of F, that is there is no
path from s to t in G \ F.

– A set F is called a cutting-edge-set if F is an s-t-cutting-edge-set for two nodes
s and t.

5.2. Menger’s and Whitney’s Theorems
Menger’s Theorem: For non-adjacent nodes s and t in an undirected graph, the maxi-
mum number of node independent paths is equal to the minimum size of s-t-cutting-node-
set. For nodes s and t in an undirected graph, the maximum number of edge independent
paths is equal to the minimum size of an s-t-cutting-edge-set.

Whitney’s Theorem: An undirected graph with at least k+1 nodes is k-node-connected
iff each cutting-node-set in G contains at least k nodes. An undirected graph is k-edge-
connected iff each cutting-edge-set in G contains at least k edges.

Implications for communication networks:

• If a communication network is supposed to allow communication between arbitrary
nodes even in case of failure of r arbitrary nodes, its topology must be at least
(r + 1)-node-connected.

• If a communication network is supposed to allow communication betwee arbitrary
nodes even in case of failure of s arbitrary links, its topology must be at least
(s + 1)-edge-connected.

Thus, the network graph can be analyzed to get information about resilience by cal-
culating the highest k for which G is k-edge/node-connected. This can be solved in
polynomial time.

If a graph is not k-edge/node-connected augmentations to G can be searched to find a
minimum set of edges/nodes to add so that G becomes k-edge/node-connected. For edge-
connectivity, this can be solved in polynomial time. For node-connectivity, polynomial
algorithms are only known for k ≤ 4. The weighted variant with the objective of weight
minimization is NP-hard already for k = 2.

5.3. Block Structure of Graphs
Let G = (V,E) be an undirected Graph with |V| ≥ 3. Of interest are all subgraphs of
maximum sizie that are biconnected. G is biconnected iff either G is a single edge or for
each tuple of vertices (u, v) there are at least to node disjoint paths. The intersection

5. Network Resilience 52

of two maximum size biconnected components consists of at most one vertex, which is
called articulation node. A graph G with at least 3 nodes is biconnected, iff G does not
contain isolated nodes and every pair of nodes is on a common single cycle.

Let e1, e2 ∈ E and ≡ be defined as e1 ≡ e2 iff e1 and e2 lie on a common simple
cycle. This equivalence relation partitions E into sets E1,E2, . . . ,Eh. Let Gi = G [Ei] for
i ∈ {1, . . . , h}. These subgraphs are called blocks. Blocks with at least 2 edges are the
maximum sized biconnected components of G.

Let Gi = G [Ei] = (Vi,Ei) be the blocks of G, then

• ∀i ̸= j ∈ {1, . . . , h} : |Vi ∩ Vj| ≤ 1.

• A node a ∈ V is an articulation node iff ∃i ̸= j ∈ {1, . . . , h} : Vi ∩ Vj = {a}.

The block structure of a graph can be describe with a so-called block structure graph
B (G) that contains nodes va for each articulation node a and nodes vb for each block
b with each va being connected to the nodes vb denoting the respective biconnected
components b that node a is connected to in G. B (G) is a tree.

Calculating B (G) allows to identify articulation nodes as well as the blocks of a graph.
It also allows network designers to see which nodes in the network are more important
to protect or between which components of the network additional links are needed.

5.4. DFS Spanning Trees on Network Graphs
5.4.1. Classification of Edges
Articulation nodes can be found in O (|V| (|V|+ |E|)), by deleting each node and using
DFS to calculate a spanning tree to see if it’s still connected. During DFS, preorder and
postorder numbers can be calculated, which are incremented for each node before and
after recursion, respectively.

Classification of edges of G with respect to a spanning tree T:

• An edge vw ∈ E (T) is called a tree edge.

• An edge vw ∈ E (G) \E (T) is called a back edge if v is a descendant or ancestor of
w.

• Else, vw is called a cross edge (these don’t exist if T is a depth-first-search tree).

Let Dv be the number of descendants of v. Then w is descendant of v iff v.pre < w.pre ≤
v.pre + Dv. The following notation is used for edges with respect to the DFS-tree T:

• u → v iff uv ∈ E (T)

• u ∗→ v iff u is an ancestor of v

• w --- u iff wu is back edge if wu in E (G) \ E (T) with either w ∗→ u or u ∗→ w.

5. Network Resilience 53

5.4.2. Computing Articulation Nodes
If w is descendant of v and wu is back edge such that u.pre < v.pre, then u is a proper
ancestor of v. In a DFS tree T, a node v other than the root is an articuation node iff v
is not a leaf and some subtree of v has no back edge incident to a proper ancestor of v
and some subtree of v has no back edge incident to a proper ancestor of v.

To efficiently implement this test, the so-called low value is used: For each vertex v
define

low (v) := min
(
{v.pre} ∪

{
w.pre

∣∣∣ v ∗→ --- w
})

(5.1)

With v ∗→ --- w meaning that v is connect to w through a path of tree edges and poten-
tially one additional back edge as the last edge.

low (v) = min ({v.pre} ∪ {low (w) | v → w} ∪ {w.pre | v --- w}) (5.2)

low (v) = v.low can be computed for all nodes v ∈ V (G) by using DFS and evaluationg
preorder values of incident nodes as each node is visited. For each node v that is visited
during DFS, set v.pre, initialize v.low := v.pre and consider all edges of v:

• For tree edges to unvisited nodes w, perform a recursive call and after it returns
and w.low has been computed properly, set v.low := min {v.low,w.low}.

• For back edges to nodes w that have already been visited, set v.low := min {v.low,w.pre}.

A node a is an articulation node iff either the node a is the DFS tree root with ≥ 2
tree children or the node a is not the DFS tree root, but it has a tree child v with
low (v) ≥ a.pre. Thus, the articulation nodes of a graph can be calculated with a slightly
modified DFS in O (|V|+ |E|).

5.4.3. Computing the Blocks of a Graph
In order to also compute the blocks of G while computing articulation points, an addi-
tional stack s of edges is introduced:

• Whenever a tree edge v → w is found, push it to s prior to making the recursive
call.

• Whenever a back edge is found, push it to s.

• Whenever a recursive call for node w returns to v and w.low ≥ v.pre, then all edges
on top of the stack up to v → w form the next identified block.

With all operations for the stack being done in O (|V|+ |E|) (holds true when memory
is preallocated), the running time of the algorithm is O (|V|+ |E|).

A. Letter Salad Decryption Manual
In case one does no longer know which letter means what, here is a semi-comprehensive
list of letters used throughout the lecture:

v Node

e Edge/Link

P Path

δ Indicator wheter a link is on a path

x Flow

y Link capacity (uncapacitated problems)

c Link capacity (capacitated problems)

h Demand

ξ Link cost

ζ Path cost

w Weight

κ Opening cost

s Failure state

α Link up in failure state

u binary variable

ε Lower bound

nd Minimum number of path splits

D̂ Delay

B Budget

Stichwortverzeichnis

adaptive routing, 6
Allocation With Convex Cost Function,

43
Arbitrary Split Among k Paths, 39
arc, 15
articulation node, 52

back edge, 52
backward learning, 7
basic solution, 27
basis, 28
Bellman-Ford algorithm, 10
biconnected, 50
Bland’s rule, 28
block, 52
block structure graph, 52
bounded, 26
Bounded Link Capacities, 36
branch and bound, 31
Budget Constraint, 48
bursty, 6

capacitated problems, 17
Capacity Design With Fixed Routing

and Delay Constraint, 45
closed, 26
concave, 45
Concave Dimensioning Functions with

Piecewise Mixed-Integer
Approximation, 47

Concave Link Dimensioning Functions,
45

connected, 50
convex, 26, 42
Convex Penalty Function with Piecewise

Linear Approximation, 44
cost, 18

count to infinity, 10
cross edge, 52
cutting-edge-set, 51
cutting-node-set, 51

demand, 12
demand volume matrix, 12
Dijkstra, 9
dimensioning problem, 17
distance vector, 9
dual, 30

ECMP, 19
edge independent, 50
edge-connectivity, 50
elastic, 19
end system, 5
equal-cost multi-path, 19
equity, 19
extreme point, 26

feasible set, 24
feasible solution, 24
flooding, 6
flow allocation vector, 17
flow vector, 17

Generalized Diversity, 37

heavy-tailed, 12
hot potato, 7

Integral Flow Pure Allocation Problem,
38

interconnected network, 11
interdomain routing, 11
Internet Service Provider, 11
intradomain routing, 11
ISP, 11

STICHWORTVERZEICHNIS 56

k-edge-connected, 50
k-node-connected, 50

label switched path, 22
length, 18
Limited Demand Split, 38
linear optimization problem, 24

canonical form, 25
standard form, 25

link
logical, 14

link capacity module, 40
link-demand-path-identifer-based

formulation, 16
link-path formulation, 15
link-path incidence relation, 17
Links With Incremental Modules, 42
Links With Multiple Modular Sizes, 41
Little’s Law, 13
load, 17
LOP, 24
low value, 53
Lower Bounded Flows, 38
LP-relaxation, 32

Markov chain, 13
Max-Min-Fairness, 19
Menger’s Theorem, 51
MIP, 23
mixed-integer linear programming

problem, 23
MMF, 19
Modular Flow Allocation, 39
modular links, 41
MPLS, 22
multi-commodity flow problem, 15
Multi-Protocol Label Switching, 22

network resilience, 50
node independent, 50
node-connectivity, 50
node-link formulation, 15

non-bifurcated, 18

objective function, 24
opening cost, 20
optimal solution, 24
optimization method, 24
optimization problem, 24

PAP Modified Link Path Formulation, 35
Path Diversity, 36
penalty function, 43
PF, 19
poisoned reverse, 10
preorder, 52
primal, 30
Proportional Fairness, 19
Pure Allocation Problem, 35

RDP, 20
relaxed, 31
restoration design problem, 20
router, 5
routing, 5

s-t-cutting-edge-set, 51
s-t-cutting-node-set, 50
shortest path, 6
Simple Design Problem, 34
Simple Extension Problem, 48
Single-Path Allocation, 38
Single-Path-Allocation, 38
slack variable, 25
statistical multiplexing gain, 14
switch, 5

traffic demand, 12
transit, 11
tree edge, 52

uncapacitated problems, 17

Whitney’s Theorem, 51

	Introduction
	Basic Types of Transmissions
	Structuring a Network
	Routing Algorithms
	Flooding
	Adaptive Routing Algorithms
	Centralized Adaptive Routing
	Isolated Adaptive Routing
	Distributed Adaptive Routing
	Graph Model for Routing Algorithms
	Dijkstra's Algorithm for Shortest Paths
	Distance Vector Routing
	The Bellman-Ford Algorithm
	Comparison of Link State and Distance Vector Algorithms

	Hierarchical Routing and Interconnected Networks
	Considerations on Traffic Demand and Link Utilization
	The Poisson Process
	Little's Law
	M/M/1 System
	Notion of Routing and Flows
	Multi-Level Networks

	Modeling Network Design Problems
	Link-Path Formulation
	Node-Link Formulation
	Link-Demand-Path-Identifier-Based Notation
	Capacitated Problems
	Shortest-Path Routing
	Fair Networks
	Topological Design
	Restoration Design
	Intra-Domain Traffic Engineering for IP Networks
	Tunnel Optimization for MPLS Networks

	Optimization Methods
	Optimization Problems
	Linear Optimization Problems
	Solving LOPs with Two Variables Graphically
	Canonical form LOPs
	Standard Form LOPs

	The Structure of the Feasible Set
	Extreme Points and Basic Solutions
	The Simplex Algorithm
	Overview
	Phase 2
	Phase 1
	Simplex Tableaus
	The Complexity of the Simplex Algorithm

	Duality
	Branch and Bound
	Branch and Bound for Mixed Integer Problems
	Cutting planes for MIP

	Network Design Problems
	Simple Design Problem
	Capacitated Problems
	Pure Allocation Problem
	Bounded Link Capacities
	Path Diversity
	Generalized Diversity
	Lower Bounded Flows
	Limited Demand Split

	Modular Flow Allocation
	Non-Linear Link Dimenioning, Cost and Delay Functions
	Modular Links
	Convex Cost and Delay Functions
	Concave Link Dimensioning Functions

	Budget Constraints
	Incremental Network Design Problems
	Representing Nodes

	Network Resilience
	Introduction
	Menger's and Whitney's Theorems
	Block Structure of Graphs
	DFS Spanning Trees on Network Graphs
	Classification of Edges
	Computing Articulation Nodes
	Computing the Blocks of a Graph

	Letter Salad Decryption Manual
	Stichwortverzeichnis

