
Technische Universität Ilmenau 24. Februar 2024

Vorlesung

Netzalgorithmen

Prof. Dr.-Ing Günter Schäfer

N EXTEX Zusammenfassung von
Adrian Schollmeyer

Inhaltsverzeichnis
1 Introduction 3

1.1 Basic Types of Transmissions . 3
1.2 Structuring a Network . 3
1.3 Routing Algorithms . 3
1.4 Flooding . 4
1.5 Adaptive Routing Algorithms . 4

1.5.1 Centralized Adaptive Routing . 5
1.5.2 Isolated Adaptive Routing . 5
1.5.3 Distributed Adaptive Routing . 6
1.5.4 Graph Model for Routing Algorithms 7
1.5.5 Dijkstra’s Algorithm for Shortest Paths 7
1.5.6 Distance Vector Routing . 7
1.5.7 The Bellman-Ford Algorithm . 8
1.5.8 Comparison of Link State and Distance Vector Algorithms 8

1.6 Hierarchical Routing and Interconnected Networks 9
1.7 Considerations on Traffic Demand and Link Utilization 10

Stichwortverzeichnis 11

1 Introduction

1.1 Basic Types of Transmissions
Web • Bunch of data to be transmitted

• No guaranteed arrival times
• Simplest Case: Server and Client are directly connected by a cable

Telephony • Continuous flow of information
• Information must arrive in time
• Simplest Case: Two telephones are directly connected via a cable

1.2 Structuring a Network
As pairwise connection of all entities with each other (thus building a complete graph
of all entities) does not work, other structures need to be established. We distinguish
between end systems (user devices) and switching elements (switches, routers, etc.).

End systems connect to some form of uplink to access/provide information on the net-
work. They do not forward requests of other systems.

Switching elements Forward incoming packets onto the next hop towards its destina-
tion. The “best” next hop is decided by various routing/forwarding tables and
algorithms.

1.3 Routing Algorithms
Routers execute routing algorithms to decide which output line an in coming packet
should be transmitted on.

Connection-oriented services Run the routing algorithm during connection setup and
only once to find one path to forward the packets along for the whole lifetime of
the connection.

Connectionless services Run the routing algorithm either for each packet or periodical-
ly, updating the router’s forwarding table in the process.

Routing algorithms can take a metric into account that assigns costs to network links
and allows administrators to influence routing decisions. Some possible metrics are:

1 Introduction 4

• Financial cost for sending a packet over a link (e. g. when the link is charged per
unit of data transferred).

• Delay (useful to penalize using a link with high delay when trying to prefer links
with low delay)

• Number of hops (commonly used in most routing algorithms deployed on the In-
ternet, aims to reduce the number of routers/networks to traverse to reach a de-
stination)

The cheapest path is also commonly referred to as the shortest path.
Basic types of routing algorithms:

Non-adaptive routing algorithms do not base routing decisions on the current state of
the network.

Adaptive routing algorithms take into account the current network state (e. g. distance
vector routing, link state routing).

1.4 Flooding
Flooding is a simple strategy, sending every incoming packet to every outgoing link except
the one it arrived on. This leads to many duplicated packets in the network, but leads to
the packet almost certainly arriving at the destination (the only exception being broken
links partitioning the network into two parts).

To reduce the number of duplicated packets, strategies can be used:

Solution 1: Hop counting Have a hop counter in the packet header, which is decremen-
ted by each router. If the packet stays in the network for too long, the hop counter
goes to 0 and the packet is dropped. Ideally, the hop counter should be initialized
to the length of the shortest path from the source to the destination.

Solution 2: Sequence numbers Each router maintains a sequence number and a table
of sequence numbers it has seen from other routers. The first-hop router increments
and adds its sequence number to each incoming packet from a host. Each router
only forwards incoming packets, if it hasn’t seen this sequence number from the
first-hop router, yet. Thus, packets that have already been seen are discarded.

1.5 Adaptive Routing Algorithms
Non-adaptive routing algorithms pose problems:

• Non-adaptive routing algorithms can’t cope with dramatic changes in traffic levels
in different parts of the network.

• Non-adaptive routing algorithsm are usually based on average traffic conditions,
but lots of computer traffic us extremely bursty (i. e. very variable in intensity).

1 Introduction 5

Thus, adaptive routing algorithms are commonly used to make routing decisions.
Three types can be distinguished:

Centralized adaptive routing Has only one central routing controller making routing
decisions.

Isolated adaptive routing Is based on information local to each router. No exchange of
information between routers is required.

Distributed adaptive routing Uses periodic exchanges of information between routers
to compute and update routing information to be stored in the local forwarding
table.

1.5.1 Centralized Adaptive Routing
At the heart of Centralized Adaptive Routing is a central routing controller, which

• periodically collects link state information from routers

• calculates routing tables for each router

• dispatches updated routing tables to each router

The centralized approach is severely limited by the routing controller. If it goes down,
the routing becomes non-adaptive, making the network vulnerable to outages. Further-
more, the controller needs to handle a great deal of routing information, making it not
only a single point of failure, but also a bottleneck for scalability and performance of the
network.

1.5.2 Isolated Adaptive Routing
The basic idea is to make routing decisions solely based on information available locally
in each router, e. g.:

• Hot potato

• Backward learning

Hot potato routing:

• Forward the incoming packet to the output link with the shortest queue

• Do not care where the selected output link leads

• Not very effective

Backward learning:

• Maintain a local forwarding table with next hop, hop count and output link

1 Introduction 6

• Incoming packets update the fowarding table entry of the sender if their hop count
is better than the entry’s current hop count

• Forward packets based on the forwarding table, random route (hot potato, flood)
the packet if no entry for the destination exists.

• Remove/forget stale entries in the forwarding table to account for deterioration of
routes (e. g. in case of link failures)

Ethernet switches commonly use backward learning to maintain forwarding tables for
MAC addresses, usually falling back to flooding packets if no entry for the destination
MAC exists in their local forwarding table.

1.5.3 Distributed Adaptive Routing
The central goal is to determine a “good” path (i. e. a sequence of routers) through the
network from source to destination. For calculations, the network is abstracted into a
graph consisting of:

Routers represented by nodes

Links represented by edges

Costs assigned to edges, representing link costs

Routing algorithms can be classified in several ways:

• Global or decentralized information
Decentralized All routers know only a portion of the network, i. e. their physi-

cally connected neighbors and link costs to their neighbors. By exchanging
information with neighbors, routes to other destinations can be calculated.
Examples: BGP (path vector), RIP (distance vector)

Global By exchanging information, routers gain knowledge of the full network
topology and the cost of each link. This is used to compute cheap routes to
each destination in the network. Examples: OSPF, IS-IS

• Static or dynamic routes
Static Routes change only slowly over time, e. g. if they are statically configured

by network administrator.
Dynamic Routes change more quickly in response to link cost changes and require

periodic updates of routing information.

1 Introduction 7

1.5.4 Graph Model for Routing Algorithms
• V = {v1, v2, . . . , vn} the set of nodes (routers)

• E = {e1, e2, . . . , em} ⊆ V2 the set of edges (links)

• c : V × V → Z>0 cost of an edge

• s ∈ V start node (i. e. the node for which the shortest path shall be found)

• d [i] cost from s to node vi

• p [i] index j of the predecessor vj of vi on the shortest path from s to vi.

• δ (s, v) cost of the shortest path from s to v

1.5.5 Dijkstra’s Algorithm for Shortest Paths
Maintain a set N (initially empty) of nodes for which shortest have been found. For each
node i that is not directly connected to s, set d [i] = ∞, otherwise d [i] = c (s, vi). Starting
from s, take vi ∈ V \ N with the lowest d [i]. The path from vi’s predecessor to vi is the
shortest path. Update d [j] for neighbors vj ∈ V \ N of vi, wherever d [i] + c (vi, vj) < d [j]
(i. e. the path from s to vj via vi is shorter than the previously known path from s to vj).
Set N := N ∪ {vi}. This results in finding the shortest paths from s to each node in the
network.

Complexity:

• O
(
|V|2

)
• Optimal in dense graphs with |E| ≈ |V|2

• Efficient implementations with O
(
|V| · log |V| + |E|

)
are possible when using

Fibonacci-Heaps.

1.5.6 Distance Vector Routing
For distance vector routing, each node has its own table for DX (Y,Z), listing the cost
from X to Y via Z as next hop. Distance vector routing has a few favorable properties,
useful in large networks like the Internet:

Iterative The algorithm works iteratively, until no nodes exchange information (i. e. no
updated information is transmitted through the network)

Asynchronous Information does not need to be exchanged in lock step. Instead any
node can send updated information at any time.

Distributed Each node only needs to communicate with its directly attached neighbors.

1 Introduction 8

Initially, all routers only know the costs to their neighbors and set the cost to any other
destination to ∞ (aka. unreachable). Afterwards they notify neighbors of their costs to
each destination they know of. Then, distance vector routing algorithms continuously
wait for changes in local link costs or link update messages from neighbors. Whenever
such a change occurs, the information is used to update the local distance table. If any
changes to shortest (!) paths have occured, neighbors are notified of the updated shortest
path costs.

The main problem of distance vector routing is the count to infinity problem. If the
link cost for a link suddenly increases (possibly to ∞), the network might now have a
shortest path to a destination going in a circle for some time, while the change in link
cost is continuously increased in the network until the new cost for the link is reached
or an alternative, shorter path is found. This increases the time to find a new shortest
path dramatically! This issue can be mitigated with poisoned reverse, i. e. when Z routes
to X via Z and Y notifies Z that the cost to X changed, Z notifies Y that its cost to X is
∞ to prevent Y from routing to X via Z (as Z would want to route to X via Y, making
the packets go in a loop).

1.5.7 The Bellman-Ford Algorithm
The Bellman-Ford algorithm is capable of solving the problem of computing shortest path
in graphs with edges with negative costs and is the basis for distance-vector routing. Its
only limitation is that there must be no cycles with negative total cost, as otherwise the
shortest path’s cost will go to −∞ (as continuously traversing such a cycle will inifinitely
reduce the total cost). The algorithm can detect if such cycles with negative total cost
exist.

The algorithm iteratively improves the estimated cost to reach a node by iterating
|V|−1 times over all edges and check if the current estimate of the node can be improved
by taking any of the connected edges, given the current estimate cost. As this algorithm
always checks all edges, it has a higher running time of O

(
|V| · |E|

)
.

Negative cost cycles can be detected by running the algorithm |V| times. If the cost
to any node has changed in the |V|th iteration, there must be a negative cost cycle.

1.5.8 Comparison of Link State and Distance Vector Algorithms
Message complexity How many messages are exchanged?

• Link State: with n nodes, E links, O (n · E) messages are sent by each node
• Distance Vector: exchange only between neighbors, but variable number of

messages and variable convergence time

Speed of Convergence How long does it take until the routing table doesn’t change
after a link state change has occured?

• Link State: O
(
n2
)

algorithm requires O (n · E) messages
• Distance Vector: variable convergence time, in part caused by routing loops

and the count-to-infinity problem

1 Introduction 9

Robustness What happens if a router malfunctions?
• Link State:

– Node can advertise incorrect link cost
– Invalid routing table calculations only affect the malfunctioning router

• Distance Vector:
– Nodes can advertise incorrect path costs
– Each node’s table is used (in part) by other routers, so errors can propa-

gate through the network

1.6 Hierarchical Routing and Interconnected Networks
So far, an idealized scenario with identical routers and a “flat” network was assumed.
In practice, networks scale to hundreds millions of destinations, making storing detailed
routing tables for all destinations in the whole network technically impossible, due to
memory limitations in routers and link overloads caused by routing table exchanges
between routers. Furthermore, administrative autonomy in parts of the network (like in
the Internet’s autonomous systems) should allow for network administrators to control
the routing (especially the routing protocol in use) in their network, independent of the
rest of the network.

In interconnected networks, data transmission usually involves multiple networks. Rou-
ting can be distinguished into two levels:

Intradomain routing inside autonomouse systems.

Interdomain routing between autonomous systems

In the Internet, interdomain routing is done using the Border Gateway Protocol (BGP),
which operates on the AS level and considers every AS as one hop. For intradomain
routing, each network administrator can choose their AS’s interior routing protocol
(e. g. OSPF, RIP, iBGP, IS-IS).

For sending traffic between ASes, Internet Service Providers (ISPs) have peering agree-
ments and connections with and to each other, making a data transfer possible. Depen-
ding on the policies and available links, traffic may not be able to be sent directly from
the source ISP to the destination ISP, but needs to be sent to a different transport
provider network first (transit).

Each network operator has to make decisions regarding how to handle the traffic in
their network, including

• allocating enough capacity of routers and links,

• choosing a routing algorithm,

• setting link costs.

1 Introduction 10

This requires estimation of traffic demand in the network. This can be displayed as
demand volume matrix H : {1, . . . , n}2 → N, denoting the traffic demand volume between
nodes vi and vj as H [i, j], also abbreviated hij later on.

1.7 Considerations on Traffic Demand and Link Utilization
To understand constraints on maximum link utilization, a few basic facts about the
natur of Internet traffic need to be recapitulated:

• Packets are delayed in every router due to store-and-forward processing and queu-
eing.

• Traffic congestion can occur in parts of the Internet.

• Packets may be dropped if arriving at a router with full output queues.

The task of a network designer is to design the network such that delay, congestion
and the probability of packet drops are minimized, while also allowing for a reasonable
utilization of the network. This is complicated by the fact that traffic arrival patterns and
packet sizes in the Internet are random. In order to characterize Internet traffic behavior,
large scale measurements are needed to gain insights about traffic arrival distribution
and packet size distribution.

Stichwortverzeichnis

adaptive routing, 4

backward learning, 5
Bellman-Ford algorithm, 8
bursty, 4

count to infinity, 8

demand, 10
demand volume matrix, 10
Dijkstra, 7
distance vector, 7

end system, 3

flooding, 4

hot potato, 5

interconnected network, 9
interdomain routing, 9
Internet Service Provider, 9
intradomain routing, 9
ISP, 9

poisoned reverse, 8

router, 3
routing, 3

shortest path, 4
switch, 3

traffic demand, 10
transit, 9

	Introduction
	Basic Types of Transmissions
	Structuring a Network
	Routing Algorithms
	Flooding
	Adaptive Routing Algorithms
	Centralized Adaptive Routing
	Isolated Adaptive Routing
	Distributed Adaptive Routing
	Graph Model for Routing Algorithms
	Dijkstra's Algorithm for Shortest Paths
	Distance Vector Routing
	The Bellman-Ford Algorithm
	Comparison of Link State and Distance Vector Algorithms

	Hierarchical Routing and Interconnected Networks
	Considerations on Traffic Demand and Link Utilization

	Stichwortverzeichnis

