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1. Introduction

1.1. Basic Types of Transmissions

Web ¢ Bunch of data to be transmitted
e No guaranteed arrival times

o Simplest Case: Server and Client are directly connected by a cable

Telephony « Continuous flow of information
e Information must arrive in time

e Simplest Case: Two telephones are directly connected via a cable

1.2. Structuring a Network

As pairwise connection of all entities with each other (thus building a complete graph
of all entities) does not work, other structures need to be established. We distinguish
between end systems (user devices) and switching elements (switches, routers, etc.).

End systems connect to some form of uplink to access/provide information on the net-
work. They do not forward requests of other systems.

Switching elements Forward incoming packets onto the next hop towards its destina-
tion. The “best” next hop is decided by various routing/forwarding tables and
algorithms.

1.3. Routing Algorithms

Routers execute routing algorithms to decide which output line an in coming packet
should be transmitted on.

Connection-oriented services Run the routing algorithm during connection setup and
only once to find one path to forward the packets along for the whole lifetime of
the connection.

Connectionless services Run the routing algorithm either for each packet or periodical-
ly, updating the router’s forwarding table in the process.

Routing algorithms can take a metric into account that assigns costs to network links
and allows administrators to influence routing decisions. Some possible metrics are:
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o+ Financial cost for sending a packet over a link (e.g. when the link is charged per
unit of data transferred).

o Delay (useful to penalize using a link with high delay when trying to prefer links
with low delay)

o Number of hops (commonly used in most routing algorithms deployed on the In-
ternet, aims to reduce the number of routers/networks to traverse to reach a de-
stination)

The cheapest path is also commonly referred to as the shortest path.
Basic types of routing algorithms:

Non-adaptive routing algorithms do not base routing decisions on the current state of
the network.

Adaptive routing algorithms take into account the current network state (e. g. distance
vector routing, link state routing).

1.4. Flooding

Flooding is a simple strategy, sending every incoming packet to every outgoing link except
the one it arrived on. This leads to many duplicated packets in the network, but leads to
the packet almost certainly arriving at the destination (the only exception being broken
links partitioning the network into two parts).

To reduce the number of duplicated packets, strategies can be used:

Solution 1: Hop counting Have a hop counter in the packet header, which is decremen-
ted by each router. If the packet stays in the network for too long, the hop counter
goes to 0 and the packet is dropped. Ideally, the hop counter should be initialized
to the length of the shortest path from the source to the destination.

Solution 2: Sequence numbers Each router maintains a sequence number and a table
of sequence numbers it has seen from other routers. The first-hop router increments
and adds its sequence number to each incoming packet from a host. Each router
only forwards incoming packets, if it hasn’t seen this sequence number from the
first-hop router, yet. Thus, packets that have already been seen are discarded.

1.5. Adaptive Routing Algorithms

Non-adaptive routing algorithms pose problems:

e Non-adaptive routing algorithms can’t cope with dramatic changes in traffic levels
in different parts of the network.

e Non-adaptive routing algorithsm are usually based on average traffic conditions,
but lots of computer traffic us extremely bursty (i.e. very variable in intensity).
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Thus, adaptive routing algorithms are commonly used to make routing decisions.
Three types can be distinguished:

Centralized adaptive routing Has only one central routing controller making routing
decisions.

Isolated adaptive routing Is based on information local to each router. No exchange of
information between routers is required.

Distributed adaptive routing Uses periodic exchanges of information between routers
to compute and update routing information to be stored in the local forwarding
table.

1.5.1. Centralized Adaptive Routing

At the heart of Centralized Adaptive Routing is a central routing controller, which
e periodically collects link state information from routers
 calculates routing tables for each router
o dispatches updated routing tables to each router

The centralized approach is severely limited by the routing controller. If it goes down,
the routing becomes non-adaptive, making the network vulnerable to outages. Further-
more, the controller needs to handle a great deal of routing information, making it not
only a single point of failure, but also a bottleneck for scalability and performance of the
network.

1.5.2. Isolated Adaptive Routing

The basic idea is to make routing decisions solely based on information available locally
in each router, e. g.:

e Hot potato
e Backward learning
Hot potato routing:
e Forward the incoming packet to the output link with the shortest queue
e Do not care where the selected output link leads
e Not very effective
Backward learning:

e Maintain a local forwarding table with next hop, hop count and output link
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e Incoming packets update the fowarding table entry of the sender if their hop count
is better than the entry’s current hop count

o Forward packets based on the forwarding table, random route (hot potato, flood)
the packet if no entry for the destination exists.

o Remove/forget stale entries in the forwarding table to account for deterioration of
routes (e.g. in case of link failures)

Ethernet switches commonly use backward learning to maintain forwarding tables for
MAC addresses, usually falling back to flooding packets if no entry for the destination
MAC exists in their local forwarding table.

1.5.3. Distributed Adaptive Routing

The central goal is to determine a “good” path (i.e. a sequence of routers) through the
network from source to destination. For calculations, the network is abstracted into a
graph consisting of:

Routers represented by nodes

Links represented by edges

Costs assigned to edges, representing link costs
Routing algorithms can be classified in several ways:

e Global or decentralized information

Decentralized All routers know only a portion of the network, i.e. their physi-
cally connected neighbors and link costs to their neighbors. By exchanging
information with neighbors, routes to other destinations can be calculated.
Examples: BGP (path vector), RIP (distance vector)

Global By exchanging information, routers gain knowledge of the full network
topology and the cost of each link. This is used to compute cheap routes to
each destination in the network. Examples: OSPF, IS-IS

e Static or dynamic routes

Static Routes change only slowly over time, e.g. if they are statically configured
by network administrator.

Dynamic Routes change more quickly in response to link cost changes and require
periodic updates of routing information.
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1.5.4. Graph Model for Routing Algorithms
o V={w,ve,...,v,} the set of nodes (routers)
o E=1{e1,e0,...,en} C V2 the set of edges (links)
e ¢: VX V— Zsg cost of an edge
e s€ Vstart node (i.e. the node for which the shortest path shall be found)
o dJi] cost from s to node v;
o pli index j of the predecessor v; of v; on the shortest path from s to v;.

e 0 (s,v) cost of the shortest path from s to v

1.5.5. Dijkstra’s Algorithm for Shortest Paths

Maintain a set N (initially empty) of nodes for which shortest have been found. For each
node ¢ that is not directly connected to s, set d[i] = oo, otherwise d[i] = ¢ (s, v;). Starting
from s, take v; € V'\ N with the lowest d[i]. The path from v;’s predecessor to v; is the
shortest path. Update d[j] for neighbors v; € V'\ N of v;, wherever d[i] + ¢ (v, v5) < d[J]
(i.e. the path from s to v; via v; is shorter than the previously known path from s to v).
Set N := NU {v;}. This results in finding the shortest paths from s to each node in the
network.
Complexity:

2
-« O(IV)
o Optimal in dense graphs with |E| ~ \V]2
« Efficient implementations with O( |V] - log | V| + |E|) are possible when using
Fibonacci-Heaps.

1.5.6. Distance Vector Routing

For distance vector routing, each node has its own table for DX (Y, 2), listing the cost
from X to Y via Z as next hop. Distance vector routing has a few favorable properties,
useful in large networks like the Internet:

Iterative The algorithm works iteratively, until no nodes exchange information (i. e. no
updated information is transmitted through the network)

Asynchronous Information does not need to be exchanged in lock step. Instead any
node can send updated information at any time.

Distributed Each node only needs to communicate with its directly attached neighbors.
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Initially, all routers only know the costs to their neighbors and set the cost to any other
destination to oo (aka. unreachable). Afterwards they notify neighbors of their costs to
each destination they know of. Then, distance vector routing algorithms continuously
wait for changes in local link costs or link update messages from neighbors. Whenever
such a change occurs, the information is used to update the local distance table. If any
changes to shortest (!) paths have occured, neighbors are notified of the updated shortest
path costs.

The main problem of distance vector routing is the count to infinity problem. If the
link cost for a link suddenly increases (possibly to 0o0), the network might now have a
shortest path to a destination going in a circle for some time, while the change in link
cost is continuously increased in the network until the new cost for the link is reached
or an alternative, shorter path is found. This increases the time to find a new shortest
path dramatically! This issue can be mitigated with poisoned reverse, i. e. when Z routes
to X via Z and Y notifies Z that the cost to X changed, Z notifies Y that its cost to X is
oo to prevent Y from routing to X via Z (as Z would want to route to X via Y, making
the packets go in a loop).

1.5.7. The Bellman-Ford Algorithm

The Bellman-Ford algorithm is capable of solving the problem of computing shortest path
in graphs with edges with negative costs and is the basis for distance-vector routing. Its
only limitation is that there must be no cycles with negative total cost, as otherwise the
shortest path’s cost will go to —oo (as continuously traversing such a cycle will inifinitely
reduce the total cost). The algorithm can detect if such cycles with negative total cost
exist.

The algorithm iteratively improves the estimated cost to reach a node by iterating
| V]—1 times over all edges and check if the current estimate of the node can be improved
by taking any of the connected edges, given the current estimate cost. As this algorithm
always checks all edges, it has a higher running time of O( |V]- |E]).

Negative cost cycles can be detected by running the algorithm | V] times. If the cost
to any node has changed in the |V|th iteration, there must be a negative cost cycle.

1.5.8. Comparison of Link State and Distance Vector Algorithms

Message complexity How many messages are exchanged?
o Link State: with n nodes, F links, O (n- E) messages are sent by each node
e Distance Vector: exchange only between neighbors, but variable number of
messages and variable convergence time
Speed of Convergence How long does it take until the routing table doesn’t change
after a link state change has occured?
e Link State: O (nQ) algorithm requires O (n - E) messages

e Distance Vector: variable convergence time, in part caused by routing loops
and the count-to-infinity problem
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Robustness What happens if a router malfunctions?
o Link State:
— Node can advertise incorrect link cost
— Invalid routing table calculations only affect the malfunctioning router
o Distance Vector:
— Nodes can advertise incorrect path costs

— Each node’s table is used (in part) by other routers, so errors can propa-
gate through the network

1.6. Hierarchical Routing and Interconnected Networks

So far, an idealized scenario with identical routers and a “flat” network was assumed.
In practice, networks scale to hundreds millions of destinations, making storing detailed
routing tables for all destinations in the whole network technically impossible, due to
memory limitations in routers and link overloads caused by routing table exchanges
between routers. Furthermore, administrative autonomy in parts of the network (like in
the Internet’s autonomous systems) should allow for network administrators to control
the routing (especially the routing protocol in use) in their network, independent of the
rest of the network.

In interconnected networks, data transmission usually involves multiple networks. Rou-
ting can be distinguished into two levels:

Intradomain routing inside autonomouse systems.
Interdomain routing between autonomous systems

In the Internet, interdomain routing is done using the Border Gateway Protocol (BGP),
which operates on the AS level and considers every AS as one hop. For intradomain
routing, each network administrator can choose their AS’s interior routing protocol
(e.g. OSPF, RIP, iBGP, IS-IS).

For sending traffic between ASes, Internet Service Providers (ISPs) have peering agree-
ments and connections with and to each other, making a data transfer possible. Depen-
ding on the policies and available links, traffic may not be able to be sent directly from
the source ISP to the destination ISP, but needs to be sent to a different transport
provider network first (transit).

Each network operator has to make decisions regarding how to handle the traffic in
their network, including

« allocating enough capacity of routers and links,
e choosing a routing algorithm,

e setting link costs.
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This requires estimation of traffic demand in the network. This can be displayed as
demand volume matriz H: {1,..., n}2 — N, denoting the traffic demand volume between
nodes v; and v; as H{[i, 7], also abbreviated h;; later on.

1.7. Considerations on Traffic Demand and Link Utilization

To understand constraints on maximum link utilization, a few basic facts about the
natur of Internet traffic need to be recapitulated:

o Packets are delayed in every router due to store-and-forward processing and queu-
eing.

o Traffic congestion can occur in parts of the Internet.
e Packets may be dropped if arriving at a router with full output queues.

The task of a network designer is to design the network such that delay, congestion
and the probability of packet drops are minimized, while also allowing for a reasonable
utilization of the network. This is complicated by the fact that traffic arrival patterns and
packet sizes in the Internet are random. In order to characterize Internet traffic behavior,
large scale measurements are needed to gain insights about traffic arrival distribution
and packet size distribution.

Important observation: Internet traffic does not follow commonly known distributions
like normal or exponential distributions, but shows self-similar characteristics and can
have heavy-tailed distributions, i.e. distributions with high skewness.

For simplicity, a few assumptions are made:

o Packets arrive according to a Poisson process with rate A:

P, (t) = (M)ne*t (1.1)

n!
(on average, one arrival in every time interval of length %)

o Packet size is exponentially distributed, leading to exponentially distributed service
times with rate u

Considering only one router, such a system can be thought of as an M/M/1 queueing
system.
1.8. The Poisson Process

Let A (t) (t > 0) be the number of packets arriving in (0, ¢]. Requirements:

. 4(0)=0
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o Idependence of teh number of arrivals in disjoint time periods
o Singularity of arrival events (packets never arrive in parallel)

e Stationary process of arrivals: the probability how many arrivals happen in a time
interval only depends on the interval length.

Denote the probablity that n packets arrive in (0, ¢] as follows:
P, (t):==Pr[A(t) = n (1.2)
Due to the aformentioned requirements, we have
Py(0)=1 Vn>0:P,(0)=0 (1.3)

After a bunch of math that no one in their right mind can memorize, we obtain:

P, (t) = (An'?neﬂ (1.4)

1.9. Little's Law

Let Arrival (T) be the number of packets arrived until time 7, W;(7T) be the waiting
time of packet 7 at time 7T, N(T) be the number of packets in the system at time 7.

We are interested in the accumulated (total) waiting time of all jobs that ever arrived
in the system until time 7. This can be computed either as the sum of waiting times
of all packets arrived until time T or as the integral over the number of packets in the
system during (0, 7]. Both methods lead to the same result.

Now, let A (T) be the average number of packets in (0, 7], W (T) be the average waiting
time of a packet and N(7T) be the average number of packets in the system. Then we

get Little’s Law:

A W=N (1.5)

1.10. M/M/1 System

The number of packets in the system (queue size) at discrete points in time § can be
described as a Markov chain, with the probability of the queue size increasing being \d
and the probability of the queue size decreasing being ©d. Let p, denote the probability
of the system having queue size n. We obtain

n _A
pm=0=p)p r=1 (1.6)
— A
N=-—5 (L.7)
A (1.8)
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Thus, with p — 1 (i.e. the system load is so high that on average each packet takes as
long to process as new packets arrive on average), the average waiting time and queue
size go to infinity. Since in reality the queue size is limited, this will lead to packets being
dropped.

If packets have average size K, bits and link capacity is C bits per second, then the
average service rate of the link is

C
Hp = 5 DPS (packets per second) (1.9)
P
If the average arrival rate is A\, pps, then the average delay is given by
1
D (O ) = ——— (1.10)
P p — Ap

This leads to an important insight: To maintain low delays, link utilization should be
kept low, e.g. below 50 %. Thus, when link utilization reaches a certain threshold, it
should be upgraded. From a delay perspective, it’s better to have one high bandwidth
link than multiple lower bandwidth links. This is often referred to as the statistical
multiplexing gain.

Contrary to this, fault tolerance may call for having multiple links. Also, on a single
link, misbehaving traffic flows are difficult to control.

1.11. Notion of Routing and Flows

Routing can not only be interpreted as the decision how an individual packet may be
transported in the networks, but also how ensemble traffic may be routed between the
same two points (e. g. points of presence, data centers). For the remainder of the lecture,
this second notion is used and instead of making routing decisions for individual packets,
decisions for whole flows are made. Routing decisions then need to stay withing capacity
constraints or can influence capacity decisions.

1.12. Multi-Level Networks

When doing interconnects over transit providers, the network architecture can be viewed
both in the transport view (i.e. the (underlay) network of the transport provider) as well
as the traffic view (i.e. the flow of traffic between nodes in the network).

Links in the traffic network are logical links and must be mapped to links/paths in the
transport network. The mapping can change the properties of the network from one view
to the other. There can be logical links between nodes in the traffic view for nodes that
are not physically connected in the transport view, e.g. if traffic between these nodes
needs to be transported over a few switches.



2. Modeling Network Design Problems

2.1. Link-Path Formulation

e hio = 5.. undirected demand between node 1 and 2 is 5, also noted as (1,2)
e I132.. amount of flow over path 1, 3, 2
e (12.. capacity of link 1-2

 a*.. optimal solution for variable a (e.g. %f3,)

These can be combined to obtain systems of equations, which usually have multiple
solutions. The answer to the question, which of these solutions is of best interest, depends
on the goal of network design, e. g.:

o Minimize the total routing cost (if links are annotated with a link cost)
e Minimize congestion of the most congested link

If the objective is to minimize the total routing cost and the cost of routing one unit
of traffic over one link is set to 1 for all links (i.e. the goal is to minimize the number of
hops for each route), an objective function might be:

F = 212 + 22132 + T13 + 2Z123 + 223 + 20213 (2.1)

Note that flows routed over two links are weighted with factor 2. Such an optimization
task is called a multi-commodity flow problem. The inverse objective (try to avoid direct
links) can also occur, e. g. in air travel networks.

Link-path formulation is one of multiple ways to describe network optimization pro-
blems. It is appropriate for networks with undirected links as well as with directed links.

2.2. Node-Link Formulation

In this scenario, links and demands are assumed to be directed, so a link 1-2 is substituted
with two directed links (“arcs”) 1 — 2 and 2 — 1. Instead of tracing all path flows
realising the demand, the total link flow for the demand on each link is considered.
Undirected demands (1, 2) are replaced with directed demands (1 : 2).

Looking from the point of view of a fixed node that is not end point of the flow, there
are flows coming in and going out of that node. The total incoming flow must then be
equal to the total outgoing flow. The demand of source nodes is the total outgoing flow
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minus the total incoming flow, while for sink nodes the demand is the total incoming
flow minus the total outgoing flow.
This gives the following notation:

e Ij312.. flow over arc 1 — 3 for demand (1 : 2)

For each demand and each node, all possible direction of paths (including backflows)
are part of the total flow equation, although backflows can be safely set to 0, as they make
no sense from a practical viewpoint. Additionally, the source node includes a —h term
and the sink node includes a h term to account for the imbalance in incoming/outgoing
flow caused by the demand (account for the conservation of flow).

A simple example for a demand (1 : 2) with nodes 1, 2,3 might be:

T12,12 + 213,12 = hi2 (2.2)
—Z13,12 + T32,12 = 0

—T12,12 — 132,12 = —h12 (2.4)
Capacity constraints are modeled as before:
T12,12 + 712,13 < C12 (2.5)

Note that the two notations shown until now can become very cumbersome for larger
networks:

e There might be no demand between some or many pairs of nodes
e There are no links between most pairs of nodes

Still, the two formulations would require inclusion of these cases, although they are not
relevant to the solution at all.

2.3. Link-Demand-Path-Identifier-Based Notation

This formulation assignes indices to demands and capacities, yielding a simpler notation:
e h;... the demand with index 4
e ¢j.. the (known) capacity of the jth link
e yj.. the unknown capacity of the jth link (dimensioning problem)
e 1. the flow of demand 7 over link j
e U — Uy —...— Upt1.. undirected path in node representation
e Ul —> ¥ — ... Upyq.. directed path in node representation

o {e1,69,...,e,}... undirected path in link representation
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o (e1,e2,...,e6y).. directed path in link representation

e &;.. cost of link e;

e Pj.. candidate path j for demand ¢

o Ocdp: €x Py — {0,1}... is link e; on candidate path Py, link-path incidence relation

The vector of all flows is called the flow allocation vector or flow vector:

x = (X1,X2,...,XD) (2.6)
= (33'11,.7}12,...,xlpl,...,xpl,xpg,...,aj'DpD> (2.
= (zgp|d=1,2,...,D;p=1,2,..., Py) (2.8)

The table for the link-path incidence relation 6.4, contains a 1 whenever a link e is
used for satisfying a demand d over a path p, and 0 if the link is not used in that path.
Note that d.qp is not a variable, but fixed!

This us a notation for the load Y, of link e and capacity constraints:

D Py
ye = Z Z 5edpxdp (29)
d=1 p=1
D Py
Vee {1,2,..., B} : > Y Seapap < Ye (2.10)
d=1 p=1

The general formulation of the simple dimensioning problem is:

E
minF = &ye (2.11)
e=1
subject to
Py
Vde {1,...,D}: Z Tip = hq demand (2.12)
p=1
D Py
Vee{l,...,E}: Z Z SedpTdp < Ye capacity (2.13)
d=1 p=1
x>0 variables (2.14)
>0 (2.15)

Depending on whether link capacites are known (fixed) or unknown (to be chosen),
¢; and y; are used, respectively. Problems with unknown link capacities are referred to
as dimensioning problems or uncapacitated problems, contrary to capacitated problems
where link capacities are known. When variables can take continuous values, then for
any optimal solution, the capacity constraints become equalities, as otherwise cost would
arise for unused capacity (which is never optimal).
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The cost of a path Pg, is given by:
E
Cap = deapbe  d€{l,....D},pe{l,..., Py} (2.16)
e=1

Shortest-Path Allocation Rule for Dimensioning Problems: For each demand, alloca-
te its entire demand to its shortest path with respect to link costs and candidate paths.
If there is more than one shortest path for a given demand, then the demand volume
can be arbitrarily split among shortest paths.

This rule works for simple dimensioning problems, but might not work if further
constraints are to be taken into account. Further constraints might very well be imposed
on the problem:

o Non-bifurcated flows require each demand to be satisfied by exactly one path flow.

e To ensure graceful degradation in case of node or link failures, flows might need to
be partitioned among several node-disjoint paths.

Depending on the demands and capacities, non-bifurcated solutions might not even be
possible, although bifurcated solutions exist.

2.4. Capacitated Problems

In some cases, link capacities are given and the task is to find a solution that satisfies
the specified demands, while staying within the capacity bounds. Such problems can be
formulated in the following general notation:

Py
Vde{l,...,D}: Z Tap = hg demand constraints (2.17)
p=1
D Py
Vee{l,...,E}: Z Z OedpTap < Ce capacity constraints (2.18)
d=1 p=1
x>0 constraints on variables (2.19)

Sometimes there might be no objective function, rendering any feasible solution ac-
ceptable. If flow routing cost is to be minimized, these problems are similar to the first
problem.

2.5. Shortest-Path Routing

Shortest-Path routing is commonly used in networks. Thus, the network design needs to
anticipate that demands will only be routed on their shortest paths. The length of the
path is determined by adding up link costs w, according to some weight system w.
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Setting the link capacities to be equal to the computed link loads of the shortest-path
routing solution gives a (trivially) feasible solution. In general, however, the objective is
to find a solution that allows to respect the given link capacities and instead looks for
the appropriate weight system.

Single Shortest Path Allocation Problem For given link capacities ¢ and demand
volumes h, find a link weight system w such that the resulting shortest paths are unique
and the resulting flow allocation vector is feasible.

This problem is usually complex, as non-bifurcated solutions may not exist even
though bifurcated solutions do, non-bifurcated solutions (if they exist) are usually hard
to determine and a weight system inducing an existing single-path flow solution might
be impossible to find.

If there are multiple shortest paths, one might be interested in splitting demand vo-
lumes amoung multiple shortest paths. Such a rule which is used in OSPF routing is
the equal-cost multi-path (ECMP) rule, aiminng to equally split the outgoing demand
volume over all outgoing next hops with equal cost for a fixed destination. However, such
a simple might fail if link weights are not set appropriately.

2.6. Fair Networks

In the Internet, demands are often not fixed but elastic, meaning that each demand can
consume any bandwidth assigned to its path. In such a case, capacity constraints are
given, for the demands hy no particular values are assumed.

An obviously initial solution is to assign each demand volume on its lower bound.
If this does not satisfy the capacity constraints, there is no feasible solution at all. If,
however, feasibility is assured, being able to carry more than the minimum required
bandwidth while at the same time giving a fair share of bandwidth to all flows might be
desired.

The best-known general fairness criterion is Maz-Min-Fairness (MMF), also called
equity:

e If no lower bounds are specified, assign the same maximal value to all demands.

o If there is still capacity left, assign the same maximal value to all demands that
can still make use of that capacity.

One might be interested in a compromise between MMF and greedily maximizing
network throughput. One such fair allocation principle is Proportional Fairness (PF)
and is realized by maximizing a logarithmic revenue function:

Vde{l,...,D}Vpe{l,...,Pg} :R(z) =) ryln (Zxdp> (2.20)
d D

with 74 being the revenue associated with demand d. If all demands are of equal im-
portance, then ry; = 1 for all demands d. This function is no longer linear. However, it
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ensures that no demand is allocated an overall path flow sum of 0 and makes assigning
(unfairly) high values “unattractive”. By introducing a linear approximation of R, the
PF problem can be solved, as is shown later.

Solving the MMF capacitated problem is more complicated, since in general it is not
enough to find a flow allocation vector that maximizes the minimal flow X; over all
demands d. Even if such a flow vector X is found, then in general some link capacities
might still be free and can be used to increase flow allocations for at least a subset of
demands.

2.7. Topological Design

When installing a link in a network, there is usually a fixed cost that is independent of
the capacity of the link (e.g. cabling cost). In order to account for this, such an opening
cost ke needs to be modeled in the objective function (which is to be minimized):

F=> &yt Y Kot (2.21)

where u, is a binary variable indicating whether link e is installed or not.
To force the capacity y. to be 0 whenever the link e is not installed, a large additional
constant A together with additional constraints is introduced,

Vee {l,...,E} : yo < Aue (2.22)

2.8. Restoration Design
So far, the network was always considered to be in operational state, without accounting
for link or node failures. Now, let’s assume the following failure model:

e Links can be either fully functional or completely failed
e No more than one link fails at a time

o Failure state s (s € {1,..., |E|}) indicates that s links have failed

To solve the restoration design problem (RDP), additional indexes s are introduced to
the path flow variables zg4,,, referring to that particular flow in case of failure state s.
This also requires reformulating the capacity constraints, e. g.:

s=0: 2120 + 2310 < Y1 (2.23)
s=1: 7121 + 2311 <0 (2.24)
s=2: 2122 + 2312 < Y1 (2.25)

Additionally, the notation «.s is introduced, indicating whether link e is up or not
obtaining the following constraints:

Vs€{0,....StVee {l,..., B} : D> Seapligps < Qesyo (2.26)
d p
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A robust network can be considerably more expensive than the cheapest network
without failure considerations.

2.9. Intra-Domain Traffic Engineering for IP Networks

In this scenario, intra-domain routing is operated by an ISP that has control over the
network topology, routing algorithm and link weight system. Due to service level agree-
ments or experience obtained via measurements, the ISP knows the demands between
nodes of their network. A common objective of intra-domain routing optimization is to
minimize the (average) delay experience by data packets. Thus, the goal is to minimize
the maximum utilization over all links.

A commonly used intra-domain routing protocol is OSPF, which is based on Dijkstra’s
algorithm, which calculates shortest paths based on some weight system w. Thus, the
goal is to identify a weight system w such that the maximum link utilization of the
network is minimized while satisfying all given demands and staying within capacity
constraints. This results in path flows and total link loads begin defined with respect
to w, as these are now induced by the weight system influencing how OSPF distributes
traffic:

Vd e {1,...,D}:Zxdp(w) = hg (2.27)

Vee {1,.. E} v, ( ZZaedpxdp ) < e (2.28)

The maximum 7 over all link utilizations can be computed and is needed to ensure that
all link loads stay below c.r:
{ye (W)
r=1max{ —&+—

Ce

e= 1E} (2.29)
Vee {1,..., B} : y. (W) Zz(sedpxdp ) < cer (2.30)

This leads to the following optimization problem:
minF = r (2.31)

subject to

Vd e {1, .. .,D} : Zd:xdp (W) = hy (2.32)

D Py

Vee {1,...,EB 1y (W) =) begptiap (W) < cor (2.33)

d=1 p=1

e:1,...,E} (2.34)
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With r being continuous and w, being non-negative integers.

For this to work, k shortest paths for every attempted weight system vector w need
to be found. If 7 < 1, no link will be overloaded. However, if r* is close to 1, congestion
is likely to occur. For ¥ > 1 there is at least one overloaded link, i.e. the demands can
not be satisifed appropriately.

2.10. Tunnel Optimization for MPLS Networks

Multi-Protocol Label Switching (MPLS) is an approach that introduces virtual connec-
tions into packet switched networks in order to speed up processing times for routers
and allow for traffic engineering. In order to transport traffic in an MPLS network, a
so-called label switched path is set up from the source (ingess MPLS node) to the desti-
nation (egress MPLS node). Tunneling (by making use of label stacking) can be used to
handle “similar” traffic in an aggregated way, allowing for different traffic capabilities
like putting traffic of similar QoS classes into the same tunnels for special treatment and
easy re-routing in case of congestion or link failures.

In order not to overload routers with too many tunnels, which would increase the
processing overhead, it is desirable to limit the number of tunnels per router and/or
link. Thus the optimization challenge is to carry different traffic classes in an MPLS
network through the creation of tunnels such that the number of tunnels per node/link
is minimized and the load is balanced amoung routers/links. For this, the same notation
as before can be used, with x4, now denoting the fraction of demand that is routed over
path Pgp, resulting in the demand constraint:

Py
Vde{l,...,D}:> agp=1 (2.35)
p=1

Note that z4, € [0, 1] and the absolute flow transported is now hgq - Zgp.
To avoid path flows with very low fractions, a lower bound ¢ is introduced together
with binary variables ug, indicating whether the lower bound is satisfied or not:

Vd e {1,...,D}Vp S {1,...,Pd} D EUgp < Tdp (236)
Vde{l,...,D}Vpe{1,...,Pd}::1:dp§ud,, (237)

Capacity feasibility constraints:

D Py
Vee {L,....,E}: > hg Y leqptiap < Co (2.38)
d=1 p=1

The number of tunnels on link e will be:

Z ZcSedpudp (2.39)
d p

The goal is now to minimize the number r representing the maximum number of
tunnels over all links:
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minF =r (2.40)
subject to
Py
Vde{l,...,D}:> agp=1 (2.41)
p=1
D Py
Ve e {1,...,E} : Zhdzéedpxdp < ce (2.42)
— p=1
Vde {l,...,D}Vpe {1,...,Pq} : cugp < zgp 2.43)
Vde{1,...,D}Vp€{1,...,Pd}:xdp§udp 244)
D Py
Vee {l,....,EB}: > > Seapigp < 7 (2.45)
d=1 p=1

and zg4, continuous and non-negative, ug, binary and r integer.

This problem has both continuous and binary variables, whilch the constraints and
objective function are linear. It is an example for a mizred-integer linear programming
problem (MIP) . Finding exact solutions for MIP is more difficult than for linear opti-
mization problems, branch-and-bound and banch-and-cut being established techniques

to solve such problems.



A. Letter Salad Decryption Manual

In case one does no longer know which letter means what, here is a semi-comprehensive
list of letters used throughout the lecture:

v Node

e Edge/Link

P Path

0 Indicator wheter a link is on a path
z Flow

y Link capacity (uncapacitated problems)
¢ Link capacity (capacitated problems)
h Demand

¢ Link cost

w Weight

x Opening cost

s Failure state

« Link up in failure state

u binary variable

¢ Lower bound
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adaptive routing, 4
arc, 13

backward learning, 5
Bellman-Ford algorithm, 8
bursty, 4

capacitated problems, 15
cost, 16
count to infinity, 8

demand, 10

demand volume matrix, 10
Dijkstra, 7

dimensioning problem, 15
distance vector, 7

ECMP, 17

elastic, 17

end system, 3

equal-cost multi-path, 17
equity, 17

flooding, 4
flow allocation vector, 15
flow vector, 15

heavy-tailed, 10
hot potato, 5

interconnected network, 9
interdomain routing, 9
Internet Service Provider, 9
intradomain routing, 9

ISP, 9

label switched path, 20
length, 16
link

logical, 12

link-demand-path-identifer-based
formulation, 14

link-path formulation, 13

link-path incidence relation, 15

Little’s Law, 11

load, 15

Markov chain, 11

Max-Min-Fairness, 17

MIP, 21

mixed-integer linear programming
problem, 21

MMEF, 17

MPLS, 20

multi-commodity flow problem, 13

Multi-Protocol Label Switching, 20

node-link formulation, 13
non-bifurcated, 16

opening cost, 18

PF, 17
poisoned reverse, 8
Proportional Fairness, 17

RDP, 18

restoration design problem, 18
router, 3

routing, 3

shortest path, 4
statistical multiplexing gain, 12
switch, 3

traffic demand, 10
transit, 9

uncapacitated problems, 15
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